Suppr超能文献

一种用于确定人类大脑连通性的贝叶斯方法。

A Bayesian approach to determining connectivity of the human brain.

作者信息

Patel Rajan S, Bowman F Dubois, Rilling James K

机构信息

Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA.

出版信息

Hum Brain Mapp. 2006 Mar;27(3):267-76. doi: 10.1002/hbm.20182.

Abstract

Recent work regarding the analysis of brain imaging data has focused on examining functional and effective connectivity of the brain. We develop a novel descriptive and inferential method to analyze the connectivity of the human brain using functional MRI (fMRI). We assess the relationship between pairs of distinct brain regions by comparing expected joint and marginal probabilities of elevated activity of voxel pairs through a Bayesian paradigm, which allows for the incorporation of previously known anatomical and functional information. We define the relationship between two distinct brain regions by measures of functional connectivity and ascendancy. After assessing the relationship between all pairs of brain voxels, we are able to construct hierarchical functional networks from any given brain region and assess significant functional connectivity and ascendancy in these networks. We illustrate the use of our connectivity analysis using data from an fMRI study of social cooperation among women who played an iterated "Prisoner's Dilemma" game. Our analysis reveals a functional network that includes the amygdala, anterior insula cortex, and anterior cingulate cortex, and another network that includes the ventral striatum, orbitofrontal cortex, and anterior insula. Our method can be used to develop causal brain networks for use with structural equation modeling and dynamic causal models.

摘要

近期有关脑成像数据分析的工作主要集中在研究大脑的功能连接和有效连接。我们开发了一种新颖的描述性和推断性方法,利用功能磁共振成像(fMRI)来分析人类大脑的连接性。我们通过贝叶斯范式比较体素对活动增强的预期联合概率和边缘概率,评估不同脑区之间的关系,该范式允许纳入先前已知的解剖学和功能信息。我们通过功能连接性和优势度的测量来定义两个不同脑区之间的关系。在评估所有脑体素对之间的关系后,我们能够从任何给定的脑区构建层次化功能网络,并评估这些网络中显著的功能连接性和优势度。我们使用一项针对参与重复“囚徒困境”游戏的女性进行的fMRI研究数据,说明了我们的连接性分析的应用。我们的分析揭示了一个包括杏仁核、前岛叶皮质和前扣带回皮质的功能网络,以及另一个包括腹侧纹状体、眶额皮质和前岛叶的网络。我们的方法可用于开发用于结构方程建模和动态因果模型的因果脑网络。

相似文献

6
Functional connectivity of the insula in the resting brain.静息态脑岛的功能连接
Neuroimage. 2011 Mar 1;55(1):8-23. doi: 10.1016/j.neuroimage.2010.11.049. Epub 2010 Nov 24.
8
A neural basis for social cooperation.社会合作的神经基础。
Neuron. 2002 Jul 18;35(2):395-405. doi: 10.1016/s0896-6273(02)00755-9.

引用本文的文献

2
Gradient synchronization for multivariate functional data, with application to brain connectivity.多元函数数据的梯度同步及其在脑连接性中的应用
J R Stat Soc Series B Stat Methodol. 2024 Jan 22;86(3):694-713. doi: 10.1093/jrsssb/qkad140. eCollection 2024 Jul.
6
SCALAR ON NETWORK REGRESSION VIA BOOSTING.基于提升法的网络回归中的标量
Ann Appl Stat. 2022 Dec;16(4):2755-2773. doi: 10.1214/22-aoas1612. Epub 2022 Sep 26.
7
Sex differences in brain homotopic co-activations: a meta-analytic study.脑同型激活的性别差异:一项荟萃分析研究。
Brain Struct Funct. 2022 Nov;227(8):2839-2855. doi: 10.1007/s00429-022-02572-0. Epub 2022 Oct 21.
9
A co-alteration parceling of the cingulate cortex.扣带皮层的共变分割。
Brain Struct Funct. 2022 Jun;227(5):1803-1816. doi: 10.1007/s00429-022-02473-2. Epub 2022 Mar 3.
10
Interhemispheric co-alteration of brain homotopic regions.大脑同源区域的半球间共同改变。
Brain Struct Funct. 2021 Sep;226(7):2181-2204. doi: 10.1007/s00429-021-02318-4. Epub 2021 Jun 25.

本文引用的文献

1
Evolutionary explanations of emotions.情绪的进化解释。
Hum Nat. 1990 Sep;1(3):261-89. doi: 10.1007/BF02733986.
5
Comparing dynamic causal models.比较动态因果模型。
Neuroimage. 2004 Jul;22(3):1157-72. doi: 10.1016/j.neuroimage.2004.03.026.
6
Dynamic causal modelling.动态因果模型
Neuroimage. 2003 Aug;19(4):1273-302. doi: 10.1016/s1053-8119(03)00202-7.
7
Posterior probability maps and SPMs.后验概率图和统计参数映射图。
Neuroimage. 2003 Jul;19(3):1240-9. doi: 10.1016/s1053-8119(03)00144-7.
9
Cognitive neuroscience of human social behaviour.人类社会行为的认知神经科学
Nat Rev Neurosci. 2003 Mar;4(3):165-78. doi: 10.1038/nrn1056.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验