Suppr超能文献

一种用于确定人类大脑连通性的贝叶斯方法。

A Bayesian approach to determining connectivity of the human brain.

作者信息

Patel Rajan S, Bowman F Dubois, Rilling James K

机构信息

Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA.

出版信息

Hum Brain Mapp. 2006 Mar;27(3):267-76. doi: 10.1002/hbm.20182.

Abstract

Recent work regarding the analysis of brain imaging data has focused on examining functional and effective connectivity of the brain. We develop a novel descriptive and inferential method to analyze the connectivity of the human brain using functional MRI (fMRI). We assess the relationship between pairs of distinct brain regions by comparing expected joint and marginal probabilities of elevated activity of voxel pairs through a Bayesian paradigm, which allows for the incorporation of previously known anatomical and functional information. We define the relationship between two distinct brain regions by measures of functional connectivity and ascendancy. After assessing the relationship between all pairs of brain voxels, we are able to construct hierarchical functional networks from any given brain region and assess significant functional connectivity and ascendancy in these networks. We illustrate the use of our connectivity analysis using data from an fMRI study of social cooperation among women who played an iterated "Prisoner's Dilemma" game. Our analysis reveals a functional network that includes the amygdala, anterior insula cortex, and anterior cingulate cortex, and another network that includes the ventral striatum, orbitofrontal cortex, and anterior insula. Our method can be used to develop causal brain networks for use with structural equation modeling and dynamic causal models.

摘要

近期有关脑成像数据分析的工作主要集中在研究大脑的功能连接和有效连接。我们开发了一种新颖的描述性和推断性方法,利用功能磁共振成像(fMRI)来分析人类大脑的连接性。我们通过贝叶斯范式比较体素对活动增强的预期联合概率和边缘概率,评估不同脑区之间的关系,该范式允许纳入先前已知的解剖学和功能信息。我们通过功能连接性和优势度的测量来定义两个不同脑区之间的关系。在评估所有脑体素对之间的关系后,我们能够从任何给定的脑区构建层次化功能网络,并评估这些网络中显著的功能连接性和优势度。我们使用一项针对参与重复“囚徒困境”游戏的女性进行的fMRI研究数据,说明了我们的连接性分析的应用。我们的分析揭示了一个包括杏仁核、前岛叶皮质和前扣带回皮质的功能网络,以及另一个包括腹侧纹状体、眶额皮质和前岛叶的网络。我们的方法可用于开发用于结构方程建模和动态因果模型的因果脑网络。

相似文献

1
A Bayesian approach to determining connectivity of the human brain.
Hum Brain Mapp. 2006 Mar;27(3):267-76. doi: 10.1002/hbm.20182.
3
Determining hierarchical functional networks from auditory stimuli fMRI.
Hum Brain Mapp. 2006 May;27(5):462-70. doi: 10.1002/hbm.20245.
6
Functional connectivity of the insula in the resting brain.
Neuroimage. 2011 Mar 1;55(1):8-23. doi: 10.1016/j.neuroimage.2010.11.049. Epub 2010 Nov 24.
7
A Connectomic Atlas of the Human Cerebrum-Chapter 4: The Medial Frontal Lobe, Anterior Cingulate Gyrus, and Orbitofrontal Cortex.
Oper Neurosurg (Hagerstown). 2018 Dec 1;15(suppl_1):S122-S174. doi: 10.1093/ons/opy257.
8
A neural basis for social cooperation.
Neuron. 2002 Jul 18;35(2):395-405. doi: 10.1016/s0896-6273(02)00755-9.
9
Driving and driven architectures of directed small-world human brain functional networks.
PLoS One. 2011;6(8):e23460. doi: 10.1371/journal.pone.0023460. Epub 2011 Aug 12.

引用本文的文献

1
A Study Over Brain Connectivity Network of Parkinson's Patients, Using Nonparametric Bayesian Model.
Basic Clin Neurosci. 2024 Jan-Feb;15(1):61-72. doi: 10.32598/bcn.2021.3217.1. Epub 2024 Jan 1.
2
Gradient synchronization for multivariate functional data, with application to brain connectivity.
J R Stat Soc Series B Stat Methodol. 2024 Jan 22;86(3):694-713. doi: 10.1093/jrsssb/qkad140. eCollection 2024 Jul.
3
A novel biomarker selection method using multimodal neuroimaging data.
PLoS One. 2024 Apr 4;19(4):e0289401. doi: 10.1371/journal.pone.0289401. eCollection 2024.
4
From correlation to communication: Disentangling hidden factors from functional connectivity changes.
Netw Neurosci. 2023 Jun 30;7(2):411-430. doi: 10.1162/netn_a_00290. eCollection 2023.
5
Co-alteration Network Architecture of Major Depressive Disorder: A Multi-modal Neuroimaging Assessment of Large-scale Disease Effects.
Neuroinformatics. 2023 Apr;21(2):443-455. doi: 10.1007/s12021-022-09614-2. Epub 2022 Dec 5.
6
SCALAR ON NETWORK REGRESSION VIA BOOSTING.
Ann Appl Stat. 2022 Dec;16(4):2755-2773. doi: 10.1214/22-aoas1612. Epub 2022 Sep 26.
7
Sex differences in brain homotopic co-activations: a meta-analytic study.
Brain Struct Funct. 2022 Nov;227(8):2839-2855. doi: 10.1007/s00429-022-02572-0. Epub 2022 Oct 21.
9
A co-alteration parceling of the cingulate cortex.
Brain Struct Funct. 2022 Jun;227(5):1803-1816. doi: 10.1007/s00429-022-02473-2. Epub 2022 Mar 3.
10
Interhemispheric co-alteration of brain homotopic regions.
Brain Struct Funct. 2021 Sep;226(7):2181-2204. doi: 10.1007/s00429-021-02318-4. Epub 2021 Jun 25.

本文引用的文献

1
Evolutionary explanations of emotions.
Hum Nat. 1990 Sep;1(3):261-89. doi: 10.1007/BF02733986.
2
Neurophysiological architecture of functional magnetic resonance images of human brain.
Cereb Cortex. 2005 Sep;15(9):1332-42. doi: 10.1093/cercor/bhi016. Epub 2005 Jan 5.
3
On the role of general system theory for functional neuroimaging.
J Anat. 2004 Dec;205(6):443-70. doi: 10.1111/j.0021-8782.2004.00359.x.
4
Modelling functional integration: a comparison of structural equation and dynamic causal models.
Neuroimage. 2004;23 Suppl 1:S264-74. doi: 10.1016/j.neuroimage.2004.07.041.
5
Comparing dynamic causal models.
Neuroimage. 2004 Jul;22(3):1157-72. doi: 10.1016/j.neuroimage.2004.03.026.
6
Dynamic causal modelling.
Neuroimage. 2003 Aug;19(4):1273-302. doi: 10.1016/s1053-8119(03)00202-7.
7
Posterior probability maps and SPMs.
Neuroimage. 2003 Jul;19(3):1240-9. doi: 10.1016/s1053-8119(03)00144-7.
8
The neural basis of economic decision-making in the Ultimatum Game.
Science. 2003 Jun 13;300(5626):1755-8. doi: 10.1126/science.1082976.
9
Cognitive neuroscience of human social behaviour.
Nat Rev Neurosci. 2003 Mar;4(3):165-78. doi: 10.1038/nrn1056.
10
On bias in the estimation of autocorrelations for fMRI voxel time-series analysis.
Neuroimage. 2003 Jan;18(1):83-90. doi: 10.1006/nimg.2002.1321.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验