Suppr超能文献

基于提升法的网络回归中的标量

SCALAR ON NETWORK REGRESSION VIA BOOSTING.

作者信息

Morris Emily L, He Kevin, Kang Jian

机构信息

University of Michigan, Department of Biostatistics.

出版信息

Ann Appl Stat. 2022 Dec;16(4):2755-2773. doi: 10.1214/22-aoas1612. Epub 2022 Sep 26.

Abstract

Neuroimaging studies have a growing interest in learning the association between the individual brain connectivity networks and their clinical characteristics. It is also of great interest to identify the sub brain networks as biomarkers to predict the clinical symptoms, such as disease status, potentially providing insight on neuropathology. This motivates the need for developing a new type of regression model where the response variable is scalar, and predictors are networks that are typically represented as adjacent matrices or weighted adjacent matrices, to which we refer as scalar-on-network regression. In this work, we develop a new boosting method for model fitting with sub-network markers selection. Our approach, as opposed to group lasso or other existing regularization methods, is essentially a gradient descent algorithm leveraging known network structure. We demonstrate the utility of our methods via simulation studies and analysis of the resting-state fMRI data in a cognitive developmental cohort study.

摘要

神经影像学研究对于了解个体脑连接网络与其临床特征之间的关联兴趣日益浓厚。识别作为生物标志物的子脑网络以预测临床症状(如疾病状态)也极具吸引力,这可能为神经病理学提供见解。这促使人们需要开发一种新型回归模型,其中响应变量是标量,预测变量是通常表示为邻接矩阵或加权邻接矩阵的网络,我们将其称为网络标量回归。在这项工作中,我们开发了一种用于模型拟合和子网络标记选择的新的提升方法。与组套索或其他现有正则化方法不同,我们的方法本质上是一种利用已知网络结构的梯度下降算法。我们通过模拟研究以及对认知发育队列研究中的静息态功能磁共振成像数据的分析,展示了我们方法的实用性。

相似文献

1
SCALAR ON NETWORK REGRESSION VIA BOOSTING.
Ann Appl Stat. 2022 Dec;16(4):2755-2773. doi: 10.1214/22-aoas1612. Epub 2022 Sep 26.
2
Predicting individual brain functional connectivity using a Bayesian hierarchical model.
Neuroimage. 2017 Feb 15;147:772-787. doi: 10.1016/j.neuroimage.2016.11.048. Epub 2016 Dec 1.
3
Task-based co-activation patterns reliably predict resting state canonical network engagement during development.
Dev Cogn Neurosci. 2022 Dec;58:101160. doi: 10.1016/j.dcn.2022.101160. Epub 2022 Oct 8.
4
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
Clin Orthop Relat Res. 2020 Jul;478(7):0-1618. doi: 10.1097/CORR.0000000000001251.
5
Multimodal hyper-connectivity of functional networks using functionally-weighted LASSO for MCI classification.
Med Image Anal. 2019 Feb;52:80-96. doi: 10.1016/j.media.2018.11.006. Epub 2018 Nov 13.
7
NBS-Predict: A prediction-based extension of the network-based statistic.
Neuroimage. 2021 Dec 1;244:118625. doi: 10.1016/j.neuroimage.2021.118625. Epub 2021 Oct 2.
8
Developing Multimodal Dynamic Functional Connectivity as a Neuroimaging Biomarker.
Brain Connect. 2021 Sep;11(7):529-542. doi: 10.1089/brain.2020.0900. Epub 2021 Apr 13.
9
Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI.
Med Image Anal. 2021 Jul;71:102063. doi: 10.1016/j.media.2021.102063. Epub 2021 Apr 15.
10
Ordinal Pattern: A New Descriptor for Brain Connectivity Networks.
IEEE Trans Med Imaging. 2018 Jul;37(7):1711-1722. doi: 10.1109/TMI.2018.2798500.

引用本文的文献

1
Matrix-Variate Regression for Sparse, Low-Rank Estimation of Brain Connectivities Associated With a Clinical Outcome.
IEEE Trans Biomed Eng. 2024 Apr;71(4):1378-1390. doi: 10.1109/TBME.2023.3336241. Epub 2024 Mar 20.

本文引用的文献

1
Symmetric Bilinear Regression for Signal Subgraph Estimation.
IEEE Trans Signal Process. 2019 Apr 1;67(7):1929-1940. doi: 10.1109/tsp.2019.2899818. Epub 2019 Feb 15.
2
NETWORK CLASSIFICATION WITH APPLICATIONS TO BRAIN CONNECTOMICS.
Ann Appl Stat. 2019 Sep;13(3):1648-1677. doi: 10.1214/19-AOAS1252. Epub 2019 Oct 17.
3
Anatomy and white matter connections of the fusiform gyrus.
Sci Rep. 2020 Aug 10;10(1):13489. doi: 10.1038/s41598-020-70410-6.
4
Default-mode network streams for coupling to language and control systems.
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17308-17319. doi: 10.1073/pnas.2005238117. Epub 2020 Jul 6.
5
Prediction of neurocognition in youth from resting state fMRI.
Mol Psychiatry. 2020 Dec;25(12):3413-3421. doi: 10.1038/s41380-019-0481-6. Epub 2019 Aug 19.
6
Scalar-on-Image Regression via the Soft-Thresholded Gaussian Process.
Biometrika. 2018 Mar;105(1):165-184. doi: 10.1093/biomet/asx075. Epub 2018 Jan 19.
8
Imaging-based parcellations of the human brain.
Nat Rev Neurosci. 2018 Nov;19(11):672-686. doi: 10.1038/s41583-018-0071-7.
9
Linked dimensions of psychopathology and connectivity in functional brain networks.
Nat Commun. 2018 Aug 1;9(1):3003. doi: 10.1038/s41467-018-05317-y.
10
Generalized Scalar-on-Image Regression Models via Total Variation.
J Am Stat Assoc. 2017;112(519):1156-1168. doi: 10.1080/01621459.2016.1194846. Epub 2017 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验