Suppr超能文献

腹侧纹状体/伏隔核在分类学习过程中对预测误差的敏感性。

Ventral-striatal/nucleus-accumbens sensitivity to prediction errors during classification learning.

作者信息

Rodriguez P F, Aron A R, Poldrack R A

机构信息

Department of Cognitive Science, University of California, Irvine, USA.

出版信息

Hum Brain Mapp. 2006 Apr;27(4):306-13. doi: 10.1002/hbm.20186.

Abstract

A prominent theory in neuroscience suggests reward learning is driven by the discrepancy between a subject's expectation of an outcome and the actual outcome itself. Furthermore, it is postulated that midbrain dopamine neurons relay this mismatch to target regions including the ventral striatum. Using functional MRI (fMRI), we tested striatal responses to prediction errors for probabilistic classification learning with purely cognitive feedback. We used a version of the Rescorla-Wagner model to generate prediction errors for each subject and then entered these in a parametric analysis of fMRI activity. Activation in ventral striatum/nucleus-accumbens (Nacc) increased parametrically with prediction error for negative feedback. This result extends recent neuroimaging findings in reward learning by showing that learning with cognitive feedback also depends on the same circuitry and dopaminergic signaling mechanisms.

摘要

神经科学中的一个著名理论认为,奖励学习是由主体对结果的期望与实际结果之间的差异驱动的。此外,据推测,中脑多巴胺神经元将这种不匹配传递到包括腹侧纹状体在内的目标区域。我们使用功能磁共振成像(fMRI),测试了纹状体对具有纯认知反馈的概率分类学习中的预测误差的反应。我们使用Rescorla-Wagner模型的一个版本为每个受试者生成预测误差,然后将这些误差输入到fMRI活动的参数分析中。腹侧纹状体/伏隔核(Nacc)的激活随着负反馈的预测误差呈参数性增加。这一结果扩展了奖励学习中最近的神经影像学发现,表明基于认知反馈的学习也依赖于相同的神经回路和多巴胺能信号机制。

相似文献

2
The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward.
Prog Neurobiol. 2010 Apr;90(4):385-417. doi: 10.1016/j.pneurobio.2009.11.003. Epub 2009 Nov 24.
3
Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix.
Ann N Y Acad Sci. 2007 May;1104:192-212. doi: 10.1196/annals.1390.016. Epub 2007 Apr 7.
4
Differential magnitude coding of gains and omitted rewards in the ventral striatum.
Brain Res. 2011 Sep 9;1411:76-86. doi: 10.1016/j.brainres.2011.07.019. Epub 2011 Jul 18.
5
Anticipatory reward signals in ventral striatal neurons of behaving rats.
Eur J Neurosci. 2008 Nov;28(9):1849-66. doi: 10.1111/j.1460-9568.2008.06480.x.
6
Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
Prog Brain Res. 2000;126:193-215. doi: 10.1016/S0079-6123(00)26015-9.
7
Neural coding of reward-prediction error signals during classical conditioning with attractive faces.
J Neurophysiol. 2007 Apr;97(4):3036-45. doi: 10.1152/jn.01211.2006. Epub 2007 Feb 15.
8
Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain.
J Neurosci. 2006 Sep 13;26(37):9530-7. doi: 10.1523/JNEUROSCI.2915-06.2006.

引用本文的文献

1
Neural Support for Contributions of Utility and Narrative Processing of Evidence in Juror Decision Making.
J Neurosci. 2022 Oct 5;42(40):7624-7633. doi: 10.1523/JNEUROSCI.2434-21.2022. Epub 2022 Sep 5.
2
Striatal dopamine supports reward expectation and learning: A simultaneous PET/fMRI study.
Neuroimage. 2023 Feb 15;267:119831. doi: 10.1016/j.neuroimage.2022.119831. Epub 2022 Dec 28.
3
Learning under social versus nonsocial uncertainty: A meta-analytic approach.
Hum Brain Mapp. 2022 Sep;43(13):4185-4206. doi: 10.1002/hbm.25948. Epub 2022 May 27.
4
Oscillatory brain activity links experience to expectancy during associative learning.
Psychophysiology. 2022 May;59(5):e13946. doi: 10.1111/psyp.13946. Epub 2021 Oct 7.
6
The surprising role of the default mode network in naturalistic perception.
Commun Biol. 2021 Jan 19;4(1):79. doi: 10.1038/s42003-020-01602-z.
8
The neural basis of feedback-guided behavioral adjustment.
Neurosci Lett. 2020 Sep 25;736:135243. doi: 10.1016/j.neulet.2020.135243. Epub 2020 Jul 26.
9
Context effects on probability estimation.
PLoS Biol. 2020 Mar 5;18(3):e3000634. doi: 10.1371/journal.pbio.3000634. eCollection 2020 Mar.
10
Imaging-genetics of sex differences in ASD: distinct effects of OXTR variants on brain connectivity.
Transl Psychiatry. 2020 Mar 3;10(1):82. doi: 10.1038/s41398-020-0750-9.

本文引用的文献

1
Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops.
Nat Neurosci. 2004 Aug;7(8):887-93. doi: 10.1038/nn1279. Epub 2004 Jul 4.
2
Temporal difference models describe higher-order learning in humans.
Nature. 2004 Jun 10;429(6992):664-7. doi: 10.1038/nature02581.
3
Human striatal responses to monetary reward depend on saliency.
Neuron. 2004 May 13;42(3):509-17. doi: 10.1016/s0896-6273(04)00183-7.
4
Dissociable roles of ventral and dorsal striatum in instrumental conditioning.
Science. 2004 Apr 16;304(5669):452-4. doi: 10.1126/science.1094285.
5
Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli.
Science. 2004 Mar 26;303(5666):2040-2. doi: 10.1126/science.1093360.
6
Human midbrain sensitivity to cognitive feedback and uncertainty during classification learning.
J Neurophysiol. 2004 Aug;92(2):1144-52. doi: 10.1152/jn.01209.2003. Epub 2004 Mar 10.
7
Cortico-striatal contributions to feedback-based learning: converging data from neuroimaging and neuropsychology.
Brain. 2004 Apr;127(Pt 4):851-9. doi: 10.1093/brain/awh100. Epub 2004 Mar 10.
9
Modulation of caudate activity by action contingency.
Neuron. 2004 Jan 22;41(2):281-92. doi: 10.1016/s0896-6273(03)00848-1.
10
Direct activation of the ventral striatum in anticipation of aversive stimuli.
Neuron. 2003 Dec 18;40(6):1251-7. doi: 10.1016/s0896-6273(03)00724-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验