Suppr超能文献

基于图像的延时相差显微镜下血栓形成的特征描述。

Image-based characterization of thrombus formation in time-lapse DIC microscopy.

机构信息

Computer Aided Medical Procedures, Technische Universität München (TUM), Garching bei München 85748, Germany.

出版信息

Med Image Anal. 2012 May;16(4):915-31. doi: 10.1016/j.media.2012.02.002. Epub 2012 Feb 11.

Abstract

The characterization of thrombus formation in time-lapse DIC microscopy is of increased interest for identifying genes which account for atherothrombosis and coronary artery diseases (CADs). In particular, we are interested in large-scale studies on zebrafish, which result in large amount of data, and require automatic processing. In this work, we present an image-based solution for the automatized extraction of parameters quantifying the temporal development of thrombotic plugs. Our system is based on the joint segmentation of thrombotic and aortic regions over time. This task is made difficult by the low contrast and the high dynamic conditions observed in vivo DIC microscopic scenes. Our key idea is to perform this segmentation by distinguishing the different motion patterns in image time series rather than by solving standard image segmentation tasks in each image frame. Thus, we are able to compensate for the poor imaging conditions. We model motion patterns by energies based on the idea of dynamic textures, and regularize the model by two prior energies on the shape of the aortic region and on the topological relationship between the thrombus and the aorta. We demonstrate the performance of our segmentation algorithm by qualitative and quantitative experiments on synthetic examples as well as on real in vivo microscopic sequences.

摘要

在时移 DIC 显微镜下对血栓形成进行特征描述,有助于鉴定导致动脉粥样硬化和冠状动脉疾病 (CAD) 的基因。特别是,我们对斑马鱼进行了大规模的研究,产生了大量的数据,需要进行自动处理。在这项工作中,我们提出了一种基于图像的解决方案,用于自动提取定量血栓栓子时空发展的参数。我们的系统基于随时间对血栓和主动脉区域的联合分割。由于在体内 DIC 显微镜场景中观察到对比度低和动态条件高,因此这项任务具有挑战性。我们的主要思想是通过区分图像时间序列中的不同运动模式来执行此分割,而不是在每一帧图像中解决标准的图像分割任务。因此,我们能够补偿成像条件不佳的问题。我们通过基于动态纹理思想的能量来对运动模式建模,并通过对主动脉区域形状和血栓与主动脉之间的拓扑关系的两个先验能量对模型进行正则化。我们通过在合成示例以及真实体内微观序列上进行定性和定量实验,展示了我们的分割算法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84c8/3740235/6e098a646f6b/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验