Suppr超能文献

迈向CT图像中病理性肺部的自动分割

Toward automated segmentation of the pathological lung in CT.

作者信息

Sluimer Ingrid, Prokop Mathias, van Ginneken Bram

机构信息

Image Sciences Institute, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.

出版信息

IEEE Trans Med Imaging. 2005 Aug;24(8):1025-38. doi: 10.1109/TMI.2005.851757.

Abstract

Conventional methods of lung segmentation rely on a large gray value contrast between lung fields and surrounding tissues. These methods fail on scans with lungs that contain dense pathologies, and such scans occur frequently in clinical practice. We propose a segmentation-by-registration scheme in which a scan with normal lungs is elastically registered to a scan containing pathology. When the resulting transformation is applied to a mask of the normal lungs, a segmentation is found for the pathological lungs. As a mask of the normal lungs, a probabilistic segmentation built up out of the segmentations of 15 registered normal scans is used. To refine the segmentation, voxel classification is applied to a certain volume around the borders of the transformed probabilistic mask. Performance of this scheme is compared to that of three other algorithms: a conventional, a user-interactive and a voxel classification method. The algorithms are tested on 10 three-dimensional thin-slice computed tomography volumes containing high-density pathology. The resulting segmentations are evaluated by comparing them to manual segmentations in terms of volumetric overlap and border positioning measures. The conventional and user-interactive methods that start off with thresholding techniques fail to segment the pathologies and are outperformed by both voxel classification and the refined segmentation-by-registration. The refined registration scheme enjoys the additional benefit that it does not require pathological (hand-segmented) training data.

摘要

传统的肺部分割方法依赖于肺野与周围组织之间较大的灰度值对比度。这些方法在肺部存在致密病变的扫描中失效,而这种扫描在临床实践中经常出现。我们提出了一种基于配准的分割方案,其中将具有正常肺部的扫描与包含病变的扫描进行弹性配准。当将所得变换应用于正常肺部的掩码时,就可以找到病变肺部的分割结果。作为正常肺部的掩码,使用由15次配准的正常扫描的分割结果构建的概率性分割。为了细化分割,将体素分类应用于变换后的概率性掩码边界周围的一定体积。将该方案的性能与其他三种算法的性能进行比较:一种传统算法、一种用户交互式算法和一种体素分类方法。这些算法在10个包含高密度病变的三维薄层计算机断层扫描体积上进行了测试。通过在体积重叠和边界定位测量方面将所得分割结果与手动分割结果进行比较来评估分割结果。以阈值技术开始的传统方法和用户交互式方法无法分割病变,并且在体素分类和细化的基于配准的分割方面均表现不佳。细化的配准方案还有一个额外的优点,即它不需要病理(手动分割)训练数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验