Suppr超能文献

基于超像素调整和编码器-解码器分割网络的胸部X光图像肺部区域分割

Lung Field Segmentation in Chest X-ray Images Using Superpixel Resizing and Encoder-Decoder Segmentation Networks.

作者信息

Lee Chien-Cheng, So Edmund Cheung, Saidy Lamin, Wang Min-Ju

机构信息

Department of Electrical Engineering, Yuan Ze University, Taoyuan 320, Taiwan.

Department of Anesthesia, An Nan Hospital, China Medical University, Tainan 709, Taiwan.

出版信息

Bioengineering (Basel). 2022 Jul 29;9(8):351. doi: 10.3390/bioengineering9080351.

Abstract

Lung segmentation of chest X-ray (CXR) images is a fundamental step in many diagnostic applications. Most lung field segmentation methods reduce the image size to speed up the subsequent processing time. Then, the low-resolution result is upsampled to the original high-resolution image. Nevertheless, the image boundaries become blurred after the downsampling and upsampling steps. It is necessary to alleviate blurred boundaries during downsampling and upsampling. In this paper, we incorporate the lung field segmentation with the superpixel resizing framework to achieve the goal. The superpixel resizing framework upsamples the segmentation results based on the superpixel boundary information obtained from the downsampling process. Using this method, not only can the computation time of high-resolution medical image segmentation be reduced, but also the quality of the segmentation results can be preserved. We evaluate the proposed method on JSRT, LIDC-IDRI, and ANH datasets. The experimental results show that the proposed superpixel resizing framework outperforms other traditional image resizing methods. Furthermore, combining the segmentation network and the superpixel resizing framework, the proposed method achieves better results with an average time score of 4.6 s on CPU and 0.02 s on GPU.

摘要

胸部X光(CXR)图像的肺部分割是许多诊断应用中的基本步骤。大多数肺野分割方法会缩小图像尺寸以加快后续处理时间。然后,将低分辨率结果上采样到原始高分辨率图像。然而,在降采样和上采样步骤之后,图像边界会变得模糊。有必要在降采样和上采样过程中减轻边界模糊。在本文中,我们将肺野分割与超像素缩放框架相结合以实现这一目标。超像素缩放框架基于从降采样过程中获得的超像素边界信息对上采样分割结果。使用这种方法,不仅可以减少高分辨率医学图像分割的计算时间,还可以保留分割结果的质量。我们在JSRT、LIDC-IDRI和ANH数据集上评估了所提出的方法。实验结果表明,所提出的超像素缩放框架优于其他传统图像缩放方法。此外,将分割网络与超像素缩放框架相结合,所提出的方法取得了更好的结果,在CPU上的平均时间得分是4.6秒,在GPU上是0.02秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc41/9404743/3b2c969828b1/bioengineering-09-00351-g001.jpg

相似文献

1
Lung Field Segmentation in Chest X-ray Images Using Superpixel Resizing and Encoder-Decoder Segmentation Networks.
Bioengineering (Basel). 2022 Jul 29;9(8):351. doi: 10.3390/bioengineering9080351.
2
Attentional decoder networks for chest X-ray image recognition on high-resolution features.
Comput Methods Programs Biomed. 2024 Jun;251:108198. doi: 10.1016/j.cmpb.2024.108198. Epub 2024 Apr 27.
3
Breast ultrasound image segmentation: A coarse-to-fine fusion convolutional neural network.
Med Phys. 2021 Aug;48(8):4262-4278. doi: 10.1002/mp.15006. Epub 2021 Jul 29.
4
Convex and Compact Superpixels by Edge- Constrained Centroidal Power Diagram.
IEEE Trans Image Process. 2021;30:1825-1839. doi: 10.1109/TIP.2020.3045640. Epub 2021 Jan 18.
6
BioSAM: Generating SAM Prompts From Superpixel Graph for Biological Instance Segmentation.
IEEE J Biomed Health Inform. 2025 Jan;29(1):273-284. doi: 10.1109/JBHI.2024.3474706. Epub 2025 Jan 7.
7
Three Dimensional Root CT Segmentation using Multi-Resolution Encoder-Decoder Networks.
IEEE Trans Image Process. 2020 May 12. doi: 10.1109/TIP.2020.2992893.
8
Image Segmentation of Brain MRI Based on LTriDP and Superpixels of Improved SLIC.
Brain Sci. 2020 Feb 20;10(2):116. doi: 10.3390/brainsci10020116.
9
Semantic segmentation of bone structures in chest X-rays including unhealthy radiographs: A robust and accurate approach.
Int J Med Inform. 2022 Sep;165:104831. doi: 10.1016/j.ijmedinf.2022.104831. Epub 2022 Jul 18.
10
MFNet: A Novel GNN-Based Multi-Level Feature Network With Superpixel Priors.
IEEE Trans Image Process. 2022;31:7306-7321. doi: 10.1109/TIP.2022.3220057. Epub 2022 Nov 23.

引用本文的文献

1
How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications.
Bioengineering (Basel). 2023 Dec 18;10(12):1435. doi: 10.3390/bioengineering10121435.

本文引用的文献

1
Dense-Unet: a light model for lung fields segmentation in Chest X-Ray images.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1242-1245. doi: 10.1109/EMBC44109.2020.9176033.
2
Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs.
IEEE Trans Med Imaging. 2018 Aug;37(8):1865-1876. doi: 10.1109/TMI.2018.2806086. Epub 2018 Feb 26.
3
Lung Field Segmentation in Chest Radiographs From Boundary Maps by a Structured Edge Detector.
IEEE J Biomed Health Inform. 2018 May;22(3):842-851. doi: 10.1109/JBHI.2017.2687939. Epub 2017 Mar 27.
4
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
5
Accurate Lungs Segmentation on CT Chest Images by Adaptive Appearance-Guided Shape Modeling.
IEEE Trans Med Imaging. 2017 Jan;36(1):263-276. doi: 10.1109/TMI.2016.2606370. Epub 2016 Sep 12.
6
Single Image Super-Resolution Using Local Geometric Duality and Non-Local Similarity.
IEEE Trans Image Process. 2016 May;25(5):2168-86. doi: 10.1109/TIP.2016.2542442.
7
Robust All-in-Focus Super-Resolution for Focal Stack Photography.
IEEE Trans Image Process. 2016 Apr;25(4):1887-97. doi: 10.1109/TIP.2016.2523419. Epub 2016 Jan 28.
8
Hierarchical lung field segmentation with joint shape and appearance sparse learning.
IEEE Trans Med Imaging. 2014 Sep;33(9):1761-80. doi: 10.1109/TMI.2014.2305691.
9
Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration.
IEEE Trans Med Imaging. 2014 Feb;33(2):577-90. doi: 10.1109/TMI.2013.2290491. Epub 2013 Nov 13.
10
A game-theoretic framework for landmark-based image segmentation.
IEEE Trans Med Imaging. 2012 Sep;31(9):1761-76. doi: 10.1109/TMI.2012.2202915. Epub 2012 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验