Suppr超能文献

肌节对能量转换的控制。

The sarcomeric control of energy conversion.

作者信息

Levy Carmit, Ter Keurs Henk E D J, Yaniv Yael, Landesberg Amir

机构信息

Faculty of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel.

出版信息

Ann N Y Acad Sci. 2005 Jun;1047:219-31. doi: 10.1196/annals.1341.020.

Abstract

The Frank-Starling Law, Fenn Effect, and Suga's suggestions of cardiac muscle constant contractile efficiency establish the dependence of cardiac mechanics and energetics on the loading conditions. Consistent with these observations, this review suggests that the sarcomere control of contraction consists of two dominant feedbacks: (1) a cooperativity mechanism (positive feedback), whereby the number of force-generating cross-bridges (XBs) determines the affinity of calcium binding to the troponin regulatory protein; and (2) a mechanical (negative) feedback, whereby the filament shortening velocity affects the rate of XB turnover from the force to the non-force generating conformation. The study explains the roles of these feedbacks in providing the adaptive control of energy consumption by the loading conditions and validates the dependence of the cooperativity mechanism on the number of strong XBs. The cooperativity mechanism regulates XB recruitment. It explains the cardiac force-length calcium relationship, the related Frank-Starling Law of the heart, and the adaptive control of new XB recruitment and the associated adenosine triphosphate (ATP) consumption. The mechanical feedback explains the force-velocity relationship and the constant and high-contractile efficiency. These mechanisms were validated by testing the force responses to large amplitude (100 nm/sarcomere) sarcomere length (SL) oscillations, in intact tetanized trabeculae (utilizing 30 microM cyclopiazonic). The force responses to large-length oscillations lag behind the imposed oscillations at low extracellular calcium concentration (Ca(2+)) and slow frequencies (<4 Hz, 25 degrees C), yielding counterclockwise hystereses in the force-length plane. The force was higher during shortening than during lengthening. The area within these hystereses corresponds to the external work generated from new XB recruitment during each oscillation, and it is determined by the delay in the force response. Characterization of the delayed response and its dependence on the SL, force, and calcium allows identification of the regulation of XB recruitment. The direct dependence of the phase on force indicates that XB recruitment is determined directly by the force (i.e., the number of strong XBs) and indirectly by SL or calcium. The suggested feedbacks determine cardiac energetics: 1) the constant and high contractile efficiency is an intrinsic property of the single XB, due to the mechanical feedback; and 2) the XBs are the myocyte sensors that modulate XB recruitment in response to length and load changes through the cooperativity mechanism.

摘要

弗兰克 - 斯塔林定律、芬恩效应以及须贺提出的心肌收缩效率恒定的观点,确立了心脏力学和能量学对负荷条件的依赖性。与这些观察结果一致,本综述表明,肌节收缩控制包括两种主要反馈:(1)协同机制(正反馈),即产生力的横桥(XB)数量决定钙与肌钙蛋白调节蛋白结合的亲和力;(2)机械(负)反馈,即细丝缩短速度影响XB从产生力的构象转变为不产生力的构象的转换速率。该研究解释了这些反馈在根据负荷条件提供能量消耗的适应性控制方面的作用,并验证了协同机制对强XB数量的依赖性。协同机制调节XB募集。它解释了心脏力 - 长度 - 钙关系、相关的心脏弗兰克 - 斯塔林定律以及新XB募集和相关三磷酸腺苷(ATP)消耗的适应性控制。机械反馈解释了力 - 速度关系以及恒定且高的收缩效率。这些机制通过测试完整强直小梁(使用30微摩尔环匹阿尼酸)对大幅度(100纳米/肌节)肌节长度(SL)振荡的力响应得到验证。在低细胞外钙浓度(Ca(2 +))和低频(<4赫兹,25摄氏度)下,对大长度振荡的力响应滞后于施加的振荡,在力 - 长度平面上产生逆时针滞后现象。缩短过程中的力高于拉长过程中的力。这些滞后现象内的面积对应于每次振荡期间新XB募集产生的外部功,并且它由力响应的延迟决定。对延迟响应及其对SL、力和钙的依赖性进行表征,有助于确定XB募集的调节。相位对力的直接依赖性表明,XB募集直接由力(即强XB的数量)决定,间接由SL或钙决定。所提出的反馈决定心脏能量学:1)由于机械反馈,恒定且高的收缩效率是单个XB的固有特性;2)XB是心肌细胞传感器,通过协同机制响应长度和负荷变化调节XB募集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验