Suppr超能文献

肌动蛋白-肌球蛋白附着-分离的双态模型预测了正弦分析的C过程。

Two-state model of acto-myosin attachment-detachment predicts C-process of sinusoidal analysis.

作者信息

Palmer Bradley M, Suzuki Takeki, Wang Yuan, Barnes William D, Miller Mark S, Maughan David W

机构信息

Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA.

出版信息

Biophys J. 2007 Aug 1;93(3):760-9. doi: 10.1529/biophysj.106.101626. Epub 2007 May 11.

Abstract

The force response of activated striated muscle to length perturbations includes the so-called C-process, which has been considered the frequency domain representation of the fast single-exponential force decay after a length step (phases 1 and 2). The underlying molecular mechanisms of this phenomenon, however, are still the subject of various hypotheses. In this study, we derived analytical expressions and created a corresponding computer model to describe the consequences of independent acto-myosin cross-bridges characterized solely by 1), intermittent periods of attachment (t(att)) and detachment (t(det)), whose values are stochastically governed by independent probability density functions; and 2), a finite Hookian stiffness (k(stiff)) effective only during periods of attachment. The computer-simulated force response of 20,000 (N) cross-bridges making up a half-sarcomere (F(hs)(t)) to sinusoidal length perturbations (L(hs)(t)) was predicted by the analytical expression in the frequency domain, (F(hs)(omega)/L(hs)(omega))=(t(att)/t(cycle))Nk(stiff)(iomega/(t(att)(-1)+iomega)), where t(att) = mean value of t(att), t(cycle) = mean value of t(att) + t(det), k(stiff) = mean stiffness, and omega = 2pi x frequency of perturbation. The simulated force response due to a length step (L(hs)) was furthermore predicted by the analytical expression in the time domain, F(hs)(t)=(t(att)/t(cycle))Nk(stiff)L(hs)e(-t/t(att)). The forms of these analytically derived expressions are consistent with expressions historically used to describe these specific characteristics of a force response and suggest that the cycling of acto-myosin cross-bridges and their associated stiffnesses are responsible for the C-process and for phases 1 and 2. The rate constant 2pic, i.e., the frequency parameter of the historically defined C-process, is shown here to be equal to t(att)(-1). Experimental results from activated cardiac muscle examined at different temperatures and containing predominately alpha- or beta-myosin heavy chain isoforms were found to be consistent with the above interpretation.

摘要

活化横纹肌对长度扰动的力响应包括所谓的C过程,该过程被认为是长度阶跃后快速单指数力衰减(阶段1和阶段2)的频域表示。然而,这一现象的潜在分子机制仍然是各种假说的主题。在本研究中,我们推导了解析表达式并创建了相应的计算机模型,以描述仅由以下特征表征的独立肌动球蛋白横桥的结果:1)附着(t(att))和脱离(t(det))的间歇期,其值由独立概率密度函数随机控制;2)仅在附着期有效的有限胡克刚度(k(stiff))。由20,000个(N)构成半个肌节的横桥(F(hs)(t))对正弦长度扰动(L(hs)(t))的计算机模拟力响应,通过频域解析表达式预测,(F(hs)(omega)/L(hs)(omega))=(t(att)/t(cycle))Nk(stiff)(iomega/(t(att)(-1)+iomega)),其中t(att) = t(att)的平均值,t(cycle) = t(att) + t(det)的平均值,k(stiff) = 平均刚度,omega = 2π×扰动频率。此外,由长度阶跃(L(hs))引起的模拟力响应通过时域解析表达式预测,F(hs)(t)=(t(att)/t(cycle))Nk(stiff)L(hs)e(-t/t(att))。这些解析推导表达式的形式与历史上用于描述力响应这些特定特征的表达式一致,并表明肌动球蛋白横桥的循环及其相关刚度是C过程以及阶段1和阶段2的原因。这里显示历史定义的C过程的频率参数速率常数2πc等于t(att)(-1)。在不同温度下检查的、主要含有α或β肌球蛋白重链同工型的活化心肌的实验结果与上述解释一致。

相似文献

1
Two-state model of acto-myosin attachment-detachment predicts C-process of sinusoidal analysis.
Biophys J. 2007 Aug 1;93(3):760-9. doi: 10.1529/biophysj.106.101626. Epub 2007 May 11.
3
Sarcomere lattice geometry influences cooperative myosin binding in muscle.
PLoS Comput Biol. 2007 Jul;3(7):e115. doi: 10.1371/journal.pcbi.0030115.
4
The myofilament elasticity and its effect on kinetics of force generation by the myosin motor.
Arch Biochem Biophys. 2014 Jun 15;552-553:108-16. doi: 10.1016/j.abb.2014.02.017. Epub 2014 Mar 12.
7
Characterization of actomyosin bond properties in intact skeletal muscle by force spectroscopy.
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9284-9. doi: 10.1073/pnas.0611070104. Epub 2007 May 21.
9
Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers.
Biophys J. 1994 Oct;67(4):1655-68. doi: 10.1016/S0006-3495(94)80638-1.

引用本文的文献

1
2
Thick-Filament-Based Regulation and the Determinants of Force Generation.
Biomedicines. 2025 Mar 13;13(3):703. doi: 10.3390/biomedicines13030703.
3
Cellular and molecular contractile function in aged human skeletal muscle is altered by phosphate and acidosis and partially reversed with an ATP analog.
Am J Physiol Cell Physiol. 2025 Apr 1;328(4):C1220-C1233. doi: 10.1152/ajpcell.00332.2024. Epub 2025 Mar 6.
5
Assessing Cardiac Contractility From Single Molecules to Whole Hearts.
JACC Basic Transl Sci. 2023 Oct 11;9(3):414-439. doi: 10.1016/j.jacbts.2023.07.013. eCollection 2024 Mar.
6
Strain rate of stretch affects crossbridge detachment during relaxation of intact cardiac trabeculae.
PLoS One. 2024 Mar 4;19(3):e0297212. doi: 10.1371/journal.pone.0297212. eCollection 2024.
7
Analysis of metabolite and strain effects on cardiac cross-bridge dynamics using model linearisation techniques.
Front Physiol. 2024 Jan 16;14:1323605. doi: 10.3389/fphys.2023.1323605. eCollection 2023.
8
RLC phosphorylation amplifies Ca2+ sensitivity of force in myocardium from cMyBP-C knockout mice.
J Gen Physiol. 2023 Apr 3;155(4). doi: 10.1085/jgp.202213250. Epub 2023 Jan 30.
9
Effects of total knee arthroplasty on skeletal muscle structure and function at the cellular, organellar, and molecular levels.
J Appl Physiol (1985). 2022 Sep 1;133(3):647-660. doi: 10.1152/japplphysiol.00323.2022. Epub 2022 Jul 28.
10
Inertial artifact in viscoelastic measurements of striated muscle: Modeling and experimental results.
Biophys J. 2022 Apr 19;121(8):1424-1434. doi: 10.1016/j.bpj.2022.03.018. Epub 2022 Mar 18.

本文引用的文献

1
Mutation of a conserved glycine in the SH1-SH2 helix affects the load-dependent kinetics of myosin.
Biophys J. 2007 Mar 1;92(5):1623-31. doi: 10.1529/biophysj.106.097618. Epub 2006 Dec 1.
2
An alternative domain near the ATP binding pocket of Drosophila myosin affects muscle fiber kinetics.
Biophys J. 2006 Apr 1;90(7):2427-35. doi: 10.1529/biophysj.105.075184. Epub 2006 Jan 6.
3
Acto-myosin crossbridge kinetics in humans with coronary artery disease: influence of sex and diabetes mellitus.
J Mol Cell Cardiol. 2005 Nov;39(5):743-53. doi: 10.1016/j.yjmcc.2005.06.010. Epub 2005 Sep 19.
4
Elementary steps of the cross-bridge cycle in fast-twitch fiber types from rabbit skeletal muscles.
Biophys J. 2005 Nov;89(5):3248-60. doi: 10.1529/biophysj.104.056614. Epub 2005 Sep 2.
5
The sarcomeric control of energy conversion.
Ann N Y Acad Sci. 2005 Jun;1047:219-31. doi: 10.1196/annals.1341.020.
6
Effect of cardiac myosin binding protein-C on mechanoenergetics in mouse myocardium.
Circ Res. 2004 Jun 25;94(12):1615-22. doi: 10.1161/01.RES.0000132744.08754.f2. Epub 2004 May 20.
7
Differential cross-bridge kinetics of FHC myosin mutations R403Q and R453C in heterozygous mouse myocardium.
Am J Physiol Heart Circ Physiol. 2004 Jul;287(1):H91-9. doi: 10.1152/ajpheart.01015.2003. Epub 2004 Mar 4.
8
Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers.
Nat Cell Biol. 2003 Nov;5(11):980-6. doi: 10.1038/ncb1060. Epub 2003 Oct 26.
9
Muscle structure and theories of contraction.
Prog Biophys Biophys Chem. 1957;7:255-318.
10
Sensing stretch is fundamental.
Cell. 2003 Jan 24;112(2):147-50. doi: 10.1016/s0092-8674(03)00037-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验