Plewczynski Dariusz, Jaroszewski Lukasz, Godzik Adam, Kloczkowski Andrzej, Rychlewski Leszek
BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan, Poland.
J Mol Model. 2005 Nov;11(6):431-8. doi: 10.1007/s00894-005-0235-z. Epub 2005 Aug 11.
A new bioinformatics tool for molecular modeling of the local structure around phosphorylation sites in proteins has been developed. Our method is based on a library of short sequence and structure motifs. The basic structural elements to be predicted are local structure segments (LSSs). This enables us to avoid the problem of non-exact local description of structures, caused by either diversity in the structural context, or uncertainties in prediction methods. We have developed a library of LSSs and a profile--profile-matching algorithm that predicts local structures of proteins from their sequence information. Our fragment library prediction method is publicly available on a server (FRAGlib), at http://ffas.ljcrf.edu/Servers/frag.html . The algorithm has been applied successfully to the characterization of local structure around phosphorylation sites in proteins. Our computational predictions of sequence and structure preferences around phosphorylated residues have been confirmed by phosphorylation experiments for PKA and PKC kinases. The quality of predictions has been evaluated with several independent statistical tests. We have observed a significant improvement in the accuracy of predictions by incorporating structural information into the description of the neighborhood of the phosphorylated site. Our results strongly suggest that sequence information ought to be supplemented with additional structural context information (predicted with our segment similarity method) for more successful predictions of phosphorylation sites in proteins.
已开发出一种用于对蛋白质磷酸化位点周围局部结构进行分子建模的新型生物信息学工具。我们的方法基于一个短序列和结构基序库。待预测的基本结构元件是局部结构片段(LSS)。这使我们能够避免因结构背景的多样性或预测方法的不确定性而导致的结构局部描述不准确的问题。我们开发了一个LSS库和一种序列谱-序列谱匹配算法,该算法可根据蛋白质的序列信息预测其局部结构。我们的片段库预测方法可在服务器(FRAGlib)上公开获取,网址为http://ffas.ljcrf.edu/Servers/frag.html 。该算法已成功应用于蛋白质磷酸化位点周围局部结构的表征。我们对磷酸化残基周围序列和结构偏好的计算预测已通过PKA和PKC激酶的磷酸化实验得到证实。预测质量已通过多种独立的统计测试进行评估。我们观察到,通过将结构信息纳入磷酸化位点附近区域的描述中,预测准确性有了显著提高。我们的结果强烈表明,为了更成功地预测蛋白质中的磷酸化位点,序列信息应辅以额外的结构背景信息(用我们的片段相似性方法预测)。