Suppr超能文献

改进随机蛋白质文库的策略与计算工具

Strategies and computational tools for improving randomized protein libraries.

作者信息

Patrick Wayne M, Firth Andrew E

机构信息

Center for Fundamental and Applied Molecular Evolution, Emory University, 1510 Clifton Road, Atlanta GA 30322, USA.

出版信息

Biomol Eng. 2005 Oct;22(4):105-12. doi: 10.1016/j.bioeng.2005.06.001.

Abstract

In the last decade, directed evolution has become a routine approach for engineering proteins with novel or altered properties. Concurrently, a trend away from purely 'blind' randomization strategies and towards more 'semi-rational' approaches has also become apparent. In this review, we discuss ways in which structural information and predictive computational tools are playing an increasingly important role in guiding the design of randomized libraries: web servers such as ConSurf-HSSP and SCHEMA allow the prediction of sites to target for producing functional variants, while algorithms such as GLUE, PEDEL and DRIVeR are useful for estimating library completeness and diversity. In addition, we review recent methodological developments that facilitate the construction of unbiased libraries, which are inherently more diverse than biased libraries and therefore more likely to yield improved variants.

摘要

在过去十年中,定向进化已成为改造具有新特性或改变特性蛋白质的常规方法。与此同时,从纯粹的“盲目”随机化策略转向更“半理性”方法的趋势也变得明显。在本综述中,我们讨论了结构信息和预测性计算工具在指导随机文库设计中发挥越来越重要作用的方式:诸如ConSurf-HSSP和SCHEMA之类的网络服务器允许预测用于产生功能变体的靶向位点,而诸如GLUE、PEDEL和DRIVeR之类的算法则有助于估计文库的完整性和多样性。此外,我们回顾了有助于构建无偏差文库的最新方法进展,无偏差文库本质上比有偏差文库更加多样,因此更有可能产生改良变体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验