Wolff Jon A, Budker Vladimir
Department of Pediatrics, Waisman Center, University of Wisconsin-Madison Madison, Wisconsin 53705, USA.
Adv Genet. 2005;54:3-20. doi: 10.1016/S0065-2660(05)54001-X.
The administration of naked nucleic acids into animals is increasingly being used as a research tool to elucidate mechanisms of gene expression and the role of genes and their cognate proteins in the pathogenesis of disease in animal models (Herweijer and Wolff, 2003; Hodges and Scheule, 2003). It is also being used in several human clinical trials for genetic vaccines, Duchenne muscular dystrophy, peripheral limb ischemia, and cardiac ischemia (Davis et al., 1996; Romero et al., 2002; Tsurumi et al., 1997). Naked DNA is an attractive non-viral vector because of its inherent simplicity and because it can easily be produced in bacteria and manipulated using standard recombinant DNA techniques. It shows very little dissemination and transfection at distant sites following delivery and can be readministered multiple times into mammals (including primates) without inducing an antibody response against itself (i.e., no anti-DNA antibodies generated) (Jiao et al., 1992). Also, contrary to common belief, long-term foreign gene expression from naked plasmid DNA (pDNA) is possible even without chromosome integration if the target cell is postmitotic (as in muscle) or slowly mitotic (as in hepatocytes) and if an immune reaction against the foreign protein is not generated (Herweijer et al., 2001; Miao et al., 2000; Wolff et al., 1992; Zhang et al., 2004). With the advent of intravascular and electroporation techniques, its major restriction--poor expression levels--is no longer limiting and levels of foreign gene expression in vivo are approaching what can be achieved with viral vectors. Direct in vivo gene transfer with naked DNA was first demonstrated when efficient transfection of myofibers was observed following injection of mRNA or pDNA into skeletal muscle (Wolff et al., 1990). It was an unanticipated finding in that the use of naked nucleic acids was the control for experiments designed to assess the ability of cationic lipids to mediate expression in vivo. Subsequent studies also found foreign gene expression after direct injection in other tissues such as heart, thyroid, skin, and liver (Acsadi et al., 1991; Hengge et al., 1996; Kitsis and Leinwand, 1992; Li et al., 1997; Sikes and O'Malley 1994; Yang and Huang, 1996). However, the efficiency of gene transfer into skeletal muscle and these other tissues by direct injection is relatively low and variable, especially in larger animals such as nonhuman primates (Jiao et al., 1992). After our laboratory had developed novel transfection complexes of pDNA and amphipathic compounds and proteins, we sought to deliver them to hepatocytes in vivo via an intravascular route into the portal vein. Our control for these experiments was naked pDNA and we were once again surprised that this control group had the highest expression levels (Budker et al., 1996; Zhang et al., 1997). High levels of expression were achieved by the rapid injection of naked pDNA in relatively large volumes via the portal vein, the hepatic vein, and the bile duct in mice and rats. The procedure also proved effective in larger animals such as dogs and nonhuman primates (Eastman et al., 2002; Zhang et al., 1997). The next major advance was the demonstration that high levels of expression could also be achieved in hepatocytes in mice by the rapid injection of naked DNA in large volumes simply into the tail vein (Liu et al., 1999; Zhang et al., 1999). This hydrodynamic tail vein (HTV) procedure is proving to be a very useful research tool not only for gene expression studies, but also more recently for the delivery of small interfering RNA (siRNA) (Lewis et al., 2002; McCaffrey et al., 2002). The intravascular delivery of naked pDNA to muscle cells is also attractive particularly since many muscle groups would have to be targeted for intrinsic muscle disorders such as Duchenne muscular dystrophy. High levels of gene expression were first achieved by the rapid injection of naked DNA in large volumes via an artery route with both blood inflow and outflow blocked surgically (Budker et al., 1998; Zhang et al., 2001). Intravenous routes have also been shown to be effective (Hagstrom et al., 2004; Liang et al., 2004; Liu et al., 2001). For limb muscles, the ability to use a peripheral limb vein for injection and a proximal, external tourniquet to block blood flow renders the procedure to be clinically viable. This review concerns itself with the mechanism by which naked DNA is taken up by cells in vivo. A greater understanding of the mechanisms involved in the uptake and expression of naked DNA, and thus connections between postulated mechanisms and expression levels, is emphasized. Inquiries into the mechanism not only aid these practical efforts, but are also interesting on their own account with relevance to viral transduction and cellular processes. The delivery to hepatocytes is first discussed given the greater information available for this process, and then uptake by myofibers is discussed.
将裸露核酸导入动物体内越来越多地被用作一种研究工具,以阐明基因表达机制以及基因及其同源蛋白在动物模型疾病发病机制中的作用(Herweijer和Wolff,2003年;Hodges和Scheule,2003年)。它也被用于多项人类临床试验,用于基因疫苗、杜氏肌营养不良症、外周肢体缺血和心脏缺血(Davis等人,1996年;Romero等人,2002年;Tsurumi等人,1997年)。裸露DNA是一种有吸引力的非病毒载体,因为其本质简单,并且可以很容易地在细菌中产生,并使用标准重组DNA技术进行操作。在递送后,它在远处部位的扩散和转染非常少,并且可以多次重新给予哺乳动物(包括灵长类动物)而不会诱导针对其自身的抗体反应(即不会产生抗DNA抗体)(Jiao等人,1992年)。此外,与普遍看法相反,如果靶细胞是有丝分裂后细胞(如肌肉细胞)或缓慢有丝分裂细胞(如肝细胞),并且没有产生针对外源蛋白的免疫反应,即使没有染色体整合,裸露质粒DNA(pDNA)也可能实现长期外源基因表达(Herweijer等人,2001年;Miao等人,2000年;Wolff等人,1992年;Zhang等人,2004年)。随着血管内和电穿孔技术的出现,其主要限制——低表达水平——不再是限制因素,体内外源基因表达水平正在接近病毒载体所能达到的水平。当观察到将mRNA或pDNA注射到骨骼肌中后肌纤维的有效转染时,首次证明了用裸露DNA进行直接体内基因转移(Wolff等人,1990年)。这是一个意外发现,因为使用裸露核酸是旨在评估阳离子脂质在体内介导表达能力的实验的对照。随后的研究还发现,在直接注射到心脏、甲状腺、皮肤和肝脏等其他组织后也有外源基因表达(Acsadi等人,1991年;Hengge等人,1996年;Kitsis和Leinwand,1992年;Li等人,1997年;Sikes和O'Malley,199年;Yang和Huang,1996年)。然而,通过直接注射将基因转移到骨骼肌和这些其他组织中的效率相对较低且变化较大,尤其是在较大的动物如非人类灵长类动物中(Jiao等人,1992年)。在我们实验室开发了pDNA与两亲性化合物和蛋白质的新型转染复合物后,我们试图通过血管内途径将它们输送到门静脉中的肝细胞。这些实验的对照是裸露pDNA,我们再次惊讶地发现这个对照组具有最高的表达水平(Budker等人,1996年;Zhang等人,1997年)。通过经门静脉、肝静脉和胆管快速注射相对大量的裸露pDNA,在小鼠和大鼠中实现了高水平表达。该方法在较大的动物如狗和非人类灵长类动物中也被证明是有效的(Eastman等人,2002年;Zhang等人,1997年)。下一个重大进展是证明,通过简单地将大量裸露DNA快速注射到小鼠尾静脉中,也可以在肝细胞中实现高水平表达(Liu等人,1999年;Zhang等人,1999年)。这种流体动力学尾静脉(HTV)方法不仅被证明是一种非常有用的研究工具,可用于基因表达研究,而且最近还可用于递送小干扰RNA(siRNA)(Lewis等人,2002年;McCaffrey等人,2002年)。将裸露pDNA血管内递送至肌肉细胞也很有吸引力,特别是因为对于诸如杜氏肌营养不良症等内在肌肉疾病,许多肌肉群都需要作为靶点。通过手术阻断血液流入和流出,经动脉途径快速注射大量裸露DNA,首次实现了高水平基因表达(Budker等人,1998年;Zhang等人,2001年)。静脉途径也已被证明是有效的(Hagstrom等人,2004年;Liang等人,2004年;Liu等人,2001年)。对于肢体肌肉,使用外周肢体静脉进行注射并使用近端外部止血带阻断血流的能力使该方法在临床上可行。本综述关注裸露DNA在体内被细胞摄取的机制。强调了对参与裸露DNA摄取和表达的机制以及假定机制与表达水平之间联系的更深入理解。对该机制的探究不仅有助于这些实际工作,而且就其自身而言也很有趣,与病毒转导和细胞过程相关。鉴于关于该过程有更多可用信息,首先讨论向肝细胞的递送,然后讨论肌纤维的摄取。