Suppr超能文献

扩展DerSimonian和Laird的方法以进行具有随机不一致效应的网络荟萃分析。

Extending DerSimonian and Laird's methodology to perform network meta-analyses with random inconsistency effects.

作者信息

Jackson Dan, Law Martin, Barrett Jessica K, Turner Rebecca, Higgins Julian P T, Salanti Georgia, White Ian R

机构信息

MRC Biostatistics Unit, Cambridge, UK.

出版信息

Stat Med. 2016 Mar 15;35(6):819-39. doi: 10.1002/sim.6752. Epub 2015 Sep 30.

Abstract

Network meta-analysis is becoming more popular as a way to compare multiple treatments simultaneously. Here, we develop a new estimation method for fitting models for network meta-analysis with random inconsistency effects. This method is an extension of the procedure originally proposed by DerSimonian and Laird. Our methodology allows for inconsistency within the network. The proposed procedure is semi-parametric, non-iterative, fast and highly accessible to applied researchers. The methodology is found to perform satisfactorily in a simulation study provided that the sample size is large enough and the extent of the inconsistency is not very severe. We apply our approach to two real examples.

摘要

网络荟萃分析作为一种同时比较多种治疗方法的手段正变得越来越流行。在此,我们开发了一种新的估计方法,用于拟合具有随机不一致效应的网络荟萃分析模型。该方法是对最初由DerSimonian和Laird提出的程序的扩展。我们的方法允许网络内存在不一致性。所提出的程序是半参数的、非迭代的、快速的,并且应用研究人员很容易使用。结果发现,只要样本量足够大且不一致程度不是非常严重,该方法在模拟研究中表现令人满意。我们将我们的方法应用于两个实际例子。

相似文献

9

引用本文的文献

本文引用的文献

9
Detecting outlying trials in network meta-analysis.在网状Meta分析中检测异常试验
Stat Med. 2015 Aug 30;34(19):2695-707. doi: 10.1002/sim.6509. Epub 2015 Apr 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验