Vivas A, Biró B, Ruíz-Lozano J M, Barea J M, Azcón R
Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Prof. Albareda, 1, 18008 Granada, Spain.
Chemosphere. 2006 Mar;62(9):1523-33. doi: 10.1016/j.chemosphere.2005.06.053. Epub 2005 Aug 10.
In this study we investigated the interactions among plant, rhizosphere microorganisms and Zn pollution. We tested the influence of two bacterial strains isolated from a Zn-polluted soil on plant growth and on the symbiotic efficiency of native arbuscular mycorrhizal fungi (AMF) under Zn toxicity. The two bacterial strains exhibited Zn tolerance when cultivated under increasing Zn levels in the medium. However, strain B-I showed a higher Zn tolerance than strain B-II at the two highest Zn levels in the medium (75 and 100 mg l(-1) Zn). Molecular identification placed the strain B-I within the genus Brevibacillus. Our results showed that bacterial strain B-I consistently enhanced plant growth, N and P accumulation, as well as nodule number and mycorrhizal infection which demonstrated its plant-growth promoting (PGP) activity. This strain B-I has been shown to produce IAA (3.95 microg ml) and to accumulate 5.6% of Zn from the growing medium. The enhanced growth and nutrition of plants dually inoculated with the AMF and bacterium B-I was observed at three Zn levels assayed. This effect can be related to the stimulation of symbiotic structures (nodules and AMF colonization) and a decreased Zn concentration in plant tissues. The amount of Zn acquired per root weight unit was reduced by each one of these bacterial strains or AMF and particularly by the mixed bacterium-AMF inocula. These mechanisms explain the alleviation of Zn toxicity by selected microorganisms and indicate that metal-adapted bacteria and AMF play a key role enhancing plant growth under soil Zn contamination.
在本研究中,我们调查了植物、根际微生物与锌污染之间的相互作用。我们测试了从锌污染土壤中分离出的两种细菌菌株对植物生长以及在锌毒性条件下本地丛枝菌根真菌(AMF)共生效率的影响。当在培养基中锌含量增加的条件下培养时,这两种细菌菌株表现出对锌的耐受性。然而,在培养基中锌含量最高的两个水平(75和100 mg l(-1)锌)下,菌株B-I比菌株B-II表现出更高的锌耐受性。分子鉴定将菌株B-I归为短芽孢杆菌属。我们的结果表明,细菌菌株B-I持续促进植物生长、氮和磷的积累,以及根瘤数量和菌根感染,这证明了其促进植物生长(PGP)的活性。已证明该菌株B-I能产生吲哚-3-乙酸(3.95微克/毫升),并从生长培养基中积累5.6%的锌。在测定的三个锌水平下,观察到同时接种AMF和细菌B-I的植物生长和营养得到增强。这种效应可能与共生结构(根瘤和AMF定殖)的刺激以及植物组织中锌浓度的降低有关。每单位根重获取的锌量因这些细菌菌株或AMF中的每一种而减少,特别是通过细菌-AMF混合接种物。这些机制解释了所选微生物对锌毒性的缓解作用,并表明适应金属的细菌和AMF在土壤锌污染条件下增强植物生长方面发挥关键作用。