Seifert Martin, Scherf Matthias, Epple Anton, Werner Thomas
Genomatix Software GmbH, Landsbergerstr. 6, D-80339 München, Germany.
Trends Genet. 2005 Oct;21(10):553-8. doi: 10.1016/j.tig.2005.07.011.
Microarray mining is a challenging task because of the superposition of several processes in the data. We believe that the combination of microarray data-based analyses (statistical significance analysis of gene expression) with array-independent analyses (literature-mining and promoter analysis) enables some of the problems of traditional array analysis to be overcome. As a proof-of-principle, we revisited publicly available microarray data derived from an experiment with platelet-derived growth factor (PDGF)-stimulated fibroblasts. Our strategy revealed results beyond the detection of the major metabolic pathway known to be linked to the PDGF response: we were able to identify the crosstalking regulatory networks underlying the metabolic pathway without using a priori knowledge about the experiment.
由于数据中存在多个过程的叠加,微阵列挖掘是一项具有挑战性的任务。我们认为,基于微阵列数据的分析(基因表达的统计显著性分析)与独立于阵列的分析(文献挖掘和启动子分析)相结合,能够克服传统阵列分析中的一些问题。作为原理验证,我们重新审视了公开可用的微阵列数据,这些数据来自血小板衍生生长因子(PDGF)刺激的成纤维细胞实验。我们的策略揭示的结果超出了已知与PDGF反应相关的主要代谢途径的检测范围:我们能够在不使用关于该实验的先验知识的情况下,识别代谢途径背后的相互作用调节网络。