Suppr超能文献

评估和整合公开可用的SAGE、cDNA微阵列和寡核苷酸微阵列表达数据以进行全局共表达分析。

Assessment and integration of publicly available SAGE, cDNA microarray, and oligonucleotide microarray expression data for global coexpression analyses.

作者信息

Griffith Obi L, Pleasance Erin D, Fulton Debra L, Oveisi Mehrdad, Ester Martin, Siddiqui Asim S, Jones Steven J M

机构信息

Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z 4E6.

出版信息

Genomics. 2005 Oct;86(4):476-88. doi: 10.1016/j.ygeno.2005.06.009.

Abstract

Large amounts of gene expression data from several different technologies are becoming available to the scientific community. A common practice is to use these data to calculate global gene coexpression for validation or integration of other "omic" data. To assess the utility of publicly available datasets for this purpose we have analyzed Homo sapiens data from 1202 cDNA microarray experiments, 242 SAGE libraries, and 667 Affymetrix oligonucleotide microarray experiments. The three datasets compared demonstrate significant but low levels of global concordance (rc<0.11). Assessment against Gene Ontology (GO) revealed that all three platforms identify more coexpressed gene pairs with common biological processes than expected by chance. As the Pearson correlation for a gene pair increased it was more likely to be confirmed by GO. The Affymetrix dataset performed best individually with gene pairs of correlation 0.9-1.0 confirmed by GO in 74% of cases. However, in all cases, gene pairs confirmed by multiple platforms were more likely to be confirmed by GO. We show that combining results from different expression platforms increases reliability of coexpression. A comparison with other recently published coexpression studies found similar results in terms of performance against GO but with each method producing distinctly different gene pair lists.

摘要

科学界可获取来自多种不同技术的大量基因表达数据。一种常见做法是利用这些数据来计算全局基因共表达,以验证或整合其他“组学”数据。为评估公开可用数据集在此目的上的效用,我们分析了来自1202个cDNA微阵列实验、242个SAGE文库和667个Affymetrix寡核苷酸微阵列实验的智人数据。所比较的这三个数据集显示出显著但较低水平的全局一致性(rc<0.11)。针对基因本体论(GO)的评估表明,所有这三个平台识别出的具有共同生物学过程的共表达基因对比随机预期的更多。随着基因对的皮尔逊相关性增加,它更有可能被GO证实。Affymetrix数据集单独表现最佳,相关性为0.9 - 1.0的基因对在74%的情况下被GO证实。然而,在所有情况下,由多个平台证实的基因对更有可能被GO证实。我们表明,结合来自不同表达平台的结果可提高共表达的可靠性。与其他最近发表的共表达研究进行比较发现,在针对GO的性能方面结果相似,但每种方法产生的基因对列表明显不同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验