Suppr超能文献

一种利用基因表达特征进行微阵列跨平台比较的快速方法。

A rapid method for microarray cross platform comparisons using gene expression signatures.

作者信息

Cheadle Chris, Becker Kevin G, Cho-Chung Yoon S, Nesterova Maria, Watkins Tonya, Wood William, Prabhu Vinayakumar, Barnes Kathleen C

机构信息

Genomics Core, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, Mason Lord Bldg., Center Tower, Rm. 664, 5200 Eastern Avenue, Baltimore, MD 21224, USA.

出版信息

Mol Cell Probes. 2007 Feb;21(1):35-46. doi: 10.1016/j.mcp.2006.07.004. Epub 2006 Aug 10.

Abstract

Microarray technology has become highly valuable for identifying complex changes in global gene expression patterns. The inevitable use of a variety of different platforms has compounded the difficulty of effectively comparing data between projects, laboratories, and public access databases. The need for consistent, believable results across platforms is fundamental and methods for comparing results across platforms should be as straightforward as possible. We present the results of a study comparing three major, commercially available, microarray platforms (Affymetrix, Agilent, and Illumina). Concordance estimates between platforms was based on mapping of probes to Human Gene Organization (HUGO) gene names. Appropriate data normalization procedures were applied to each dataset followed by the generation of lists of regulated genes using a common significance threshold for all three platforms. As expected, concordance measured by directly comparing gene lists was relatively low (an average 22.8% for all platforms across all possible comparisons). However, when statistical tests (gene set enrichment analysis--GSEA, parametric analysis of gene enrichment--PAGE) which align gene lists with continuous measures of differential gene expression were applied to the cross platform datasets using significant gene lists to poll entire datasets, the relatedness of the results from all three platforms was specific, obvious, and profound.

摘要

微阵列技术对于识别全球基因表达模式中的复杂变化已变得极具价值。不可避免地使用各种不同平台使得在项目、实验室和公共访问数据库之间有效比较数据的难度增加。跨平台获得一致、可信结果的需求至关重要,且跨平台比较结果的方法应尽可能直接。我们展示了一项比较三种主要的市售微阵列平台(Affymetrix、安捷伦和Illumina)的研究结果。平台之间的一致性估计基于将探针映射到人类基因组织(HUGO)基因名称。对每个数据集应用适当的数据归一化程序,然后使用所有三个平台通用的显著性阈值生成调控基因列表。正如预期的那样,通过直接比较基因列表测量的一致性相对较低(在所有可能比较中,所有平台的平均一致性为22.8%)。然而,当将使基因列表与差异基因表达的连续测量值对齐的统计检验(基因集富集分析——GSEA、基因富集的参数分析——PAGE)应用于跨平台数据集,使用显著基因列表对整个数据集进行筛选时,所有三个平台的结果相关性显著、明显且深刻。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验