Suppr超能文献

通过隐式溶剂模拟预测蛋白质-配体结合亲和力:先导化合物优化的工具?

Protein-ligand binding affinity predictions by implicit solvent simulations: a tool for lead optimization?

作者信息

Michel Julien, Verdonk Marcel L, Essex Jonathan W

机构信息

School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom.

出版信息

J Med Chem. 2006 Dec 14;49(25):7427-39. doi: 10.1021/jm061021s.

Abstract

Continuum electrostatics is combined with rigorous free-energy calculations in an effort to deliver a reliable and efficient method for in silico lead optimization. The methodology is tested by calculation of the relative binding free energies of a set of inhibitors of neuraminidase, cyclooxygenase2, and cyclin-dependent kinase 2. The calculated free energies are compared to the results obtained with explicit solvent simulations and empirical scoring functions. For cyclooxygenase2, deficiencies in the continuum electrostatics theory are identified and corrected with a modified simulation protocol. For neuraminidase, it is shown that a continuum representation of the solvent leads to markedly different protein-ligand interactions compared to the explicit solvent simulations, and a reconciliation of the two protocols is problematic. Cyclin-dependent kinase 2 proves more challenging, and none of the methods employed in this study yield high quality predictions. Despite the differences observed, for these systems, the use of an implicit solvent framework to predict the ranking of congeneric inhibitors to a protein is shown to be faster, as accurate or more accurate than the explicit solvent protocol, and superior to empirical scoring schemes.

摘要

连续介质静电学与严格的自由能计算相结合,旨在提供一种可靠且高效的计算机辅助先导优化方法。通过计算一组神经氨酸酶、环氧化酶2和细胞周期蛋白依赖性激酶2抑制剂的相对结合自由能来测试该方法。将计算得到的自由能与显式溶剂模拟和经验评分函数得到的结果进行比较。对于环氧化酶2,识别出连续介质静电学理论中的缺陷,并通过修改后的模拟协议进行校正。对于神经氨酸酶,结果表明与显式溶剂模拟相比,溶剂的连续介质表示导致蛋白质-配体相互作用明显不同,并且两种协议的协调存在问题。细胞周期蛋白依赖性激酶2的情况更具挑战性,本研究中使用的任何方法都无法产生高质量的预测。尽管观察到存在差异,但对于这些系统,使用隐式溶剂框架预测同类抑制剂与蛋白质的排名被证明比显式溶剂协议更快,同样准确或更准确,并且优于经验评分方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验