Suppr超能文献

评估 MM/PBSA 方法在预测 A 类 G 蛋白偶联受体晶体结构结合亲和力方面的性能。

Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures.

机构信息

School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.

School of Pharmacy, The University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.

出版信息

J Comput Aided Mol Des. 2019 May;33(5):487-496. doi: 10.1007/s10822-019-00201-3. Epub 2019 Apr 15.

Abstract

The recent expansion of GPCR crystal structures provides the opportunity to assess the performance of structure-based drug design methods for the GPCR superfamily. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA)-based methods are commonly used for binding affinity prediction, as they provide an intermediate compromise of speed and accuracy between the empirical scoring functions used in docking and more robust free energy perturbation methods. In this study, we systematically assessed the performance of MM/PBSA in predicting experimental binding free energies using twenty Class A GPCR crystal structures and 934 known ligands. Correlations between predicted and experimental binding free energies varied significantly between individual targets, ranging from r = - 0.334 in the inactive-state CB cannabinoid receptor to r = 0.781 in the active-state CB cannabinoid receptor, while average correlation across all twenty targets was relatively poor (r = 0.183). MM/PBSA provided better predictions of binding free energies compared to docking scores in eight out of the twenty GPCR targets while performing worse for four targets. MM/PBSA binding affinity predictions calculated using a single, energy minimized structure provided comparable predictions to sampling from molecular dynamics simulations and may be more efficient when computational cost becomes restrictive. Additionally, we observed that restricting MM/PBSA calculations to ligands with a high degree of structural similarity to the crystal structure ligands improved performance in several cases. In conclusion, while MM/PBSA remains a valuable tool for GPCR structure-based drug design, its performance in predicting the binding free energies of GPCR ligands remains highly system-specific as demonstrated in a subset of twenty Class A GPCRs, and validation of MM/PBSA-based methods for each individual case is recommended before prospective use.

摘要

最近 G 蛋白偶联受体(GPCR)晶体结构的扩展为评估基于结构的药物设计方法在 GPCR 超家族中的性能提供了机会。基于分子力学/泊松-玻尔兹曼表面面积(MM/PBSA)的方法通常用于结合亲和力预测,因为它们在经验评分函数和更稳健的自由能微扰方法之间提供了速度和准确性的中间折衷。在这项研究中,我们使用二十种 A 类 GPCR 晶体结构和 934 种已知配体系统地评估了 MM/PBSA 预测实验结合自由能的性能。预测和实验结合自由能之间的相关性在各个靶标之间差异很大,从无活性状态 CB 大麻素受体的 r = -0.334 到活性状态 CB 大麻素受体的 r = 0.781,而所有二十个靶标之间的平均相关性相对较差(r = 0.183)。与 docking 分数相比,MM/PBSA 在二十个 GPCR 靶标中的八个靶标中提供了更好的结合自由能预测,而在四个靶标中表现更差。使用单个能量最小化结构计算的 MM/PBSA 结合亲和力预测与从分子动力学模拟中采样提供了可比的预测,并且在计算成本变得有限时可能更有效。此外,我们观察到,将 MM/PBSA 计算限制在与晶体结构配体具有高度结构相似性的配体上,可以在某些情况下提高性能。总之,虽然 MM/PBSA 仍然是 GPCR 基于结构的药物设计的有价值工具,但在预测 GPCR 配体的结合自由能方面,其性能仍然高度依赖于系统,正如在二十种 A 类 GPCR 的一个子集所证明的那样,在前瞻性使用之前,建议对基于 MM/PBSA 的方法进行每个单独案例的验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验