Crowley Timothy A, Pizziconi Vincent
Harrington Department of Bioengineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287-9709, USA.
Lab Chip. 2005 Sep;5(9):922-9. doi: 10.1039/b502930a. Epub 2005 Jul 19.
Researchers are actively developing devices for the microanalysis of complex fluids, such as blood. These devices have the potential to revolutionize biological analysis in a manner parallel to the computer chip by providing very high throughput screening of complex samples and massively parallel bioanalytical capabilities. A necessary step performed in clinical chemistry is the isolation of plasma from whole blood, and effective sample preparation techniques are needed for the development of miniaturized clinical diagnostic devices. This study demonstrates the use of passive, operating entirely on capillary action, transverse-flow microfilter devices for the microfluidic isolation of plasma from whole blood. Using these planar microfilters, blood can be controllably fractionated with minimal cell lysis. A characterization of the device performance reveals that plasma filter flux is dependent upon the wall shear rate of blood in the filtration channel, and this result is consistent with macroscale blood filtration using microporous membranes. Also, an innovative microfluidic layout is demonstrated that extends device operation time via capillary action from seconds to minutes. Efficiency of these microfilters is approximately three times higher than the separation efficiencies predicted for microporous membranes under similar conditions. As such, the application of the microscale blood filtration designs used in this study may have broad implications in the design of lab-on-a-chip devices, as well as the field of separation science.
研究人员正在积极开发用于复杂流体(如血液)微分析的设备。这些设备有可能通过对复杂样品进行非常高通量的筛选以及大规模并行生物分析能力,以类似于计算机芯片的方式彻底改变生物分析。临床化学中一个必要的步骤是从全血中分离血浆,而小型化临床诊断设备的开发需要有效的样品制备技术。本研究展示了使用完全基于毛细作用的被动式横向流微滤装置从全血中进行微流体血浆分离。使用这些平面微滤器,可以在细胞裂解最少的情况下对血液进行可控分级。对设备性能的表征表明,血浆过滤通量取决于过滤通道中血液的壁面剪切速率,这一结果与使用微孔膜的宏观血液过滤一致。此外,还展示了一种创新的微流体布局,通过毛细作用将设备操作时间从几秒延长到几分钟。这些微滤器的效率比在类似条件下微孔膜预测的分离效率高出约三倍。因此,本研究中使用的微尺度血液过滤设计的应用可能对芯片实验室设备的设计以及分离科学领域具有广泛的意义。