Suppr超能文献

表达大鼠砷(+3氧化态)-甲基转移酶的人膀胱上皮细胞中砷的代谢与毒性

Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation state)-methyltransferase.

作者信息

Drobná Zuzana, Waters Stephen B, Devesa Vicenta, Harmon Anne W, Thomas David J, Stýblo Miroslav

机构信息

Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599-2774, USA.

出版信息

Toxicol Appl Pharmacol. 2005 Sep 1;207(2):147-59. doi: 10.1016/j.taap.2004.12.007.

Abstract

The enzymatic methylation of inorganic As (iAs) is catalyzed by As(+3 oxidation state)-methyltransferase (AS3MT). AS3MT is expressed in rat liver and in human hepatocytes. However, AS3MT is not expressed in UROtsa, human urothelial cells that do not methylate iAs. Thus, UROtsa cells are an ideal null background in which the role of iAs methylation in modulation of toxic and cancer-promoting effects of this metalloid can be examined. A retroviral gene delivery system was used in this study to create a clonal UROtsa cell line (UROtsa/F35) that expresses rat AS3MT. Here, we characterize the metabolism and cytotoxicity of arsenite (iAs(III)) and methylated trivalent arsenicals in parental cells and clonal cells expressing AS3MT. In contrast to parental cells, UROtsa/F35 cells effectively methylated iAs(III), yielding methylarsenic (MAs) and dimethylarsenic (DMAs) containing either As(III) or As(V). When exposed to MAs(III), UROtsa/F35 cells produced DMAs(III) and DMAs(V). MAs(III) and DMAs(III) were more cytotoxic than iAs(III) in UROtsa and UROtsa/F35 cells. The greater cytotoxicity of MAs(III) or DMAs(III) than of iAs(III) was associated with greater cellular uptake and retention of each methylated trivalent arsenical. Notably, UROtsa/F35 cells were more sensitive than parental cells to the cytotoxic effects of iAs(III) but were more resistant to cytotoxicity of MAs(III). The increased sensitivity of UROtsa/F35 cells to iAs(III) was associated with inhibition of DMAs production and intracellular accumulation of MAs. The resistance of UROtsa/F35 cells to moderate concentrations of MAs(III) was linked to its rapid conversion to DMAs and efflux of DMAs. However, concentrations of MAs(III) that inhibited DMAs production by UROtsa/F35 cells were equally toxic for parental and clonal cell lines. Thus, the production and accumulation of MAs(III) is a key factor contributing to the toxicity of acute iAs exposures in methylating cells.

摘要

无机砷(iAs)的酶促甲基化由砷(+3氧化态)-甲基转移酶(AS3MT)催化。AS3MT在大鼠肝脏和人肝细胞中表达。然而,AS3MT在UROtsa细胞(不甲基化iAs的人尿道上皮细胞)中不表达。因此,UROtsa细胞是一种理想的空白背景,可用于研究iAs甲基化在调节这种类金属的毒性和促癌作用中的作用。本研究使用逆转录病毒基因递送系统创建了一个表达大鼠AS3MT的克隆UROtsa细胞系(UROtsa/F35)。在此,我们表征了原代细胞和表达AS3MT的克隆细胞中砷酸盐(iAs(III))和甲基化三价砷化合物的代谢及细胞毒性。与原代细胞不同,UROtsa/F35细胞能有效甲基化iAs(III),生成含有As(III)或As(V)的甲基砷(MAs)和二甲基砷(DMAs)。当暴露于MAs(III)时,UROtsa/F35细胞产生DMAs(III)和DMAs(V)。在UROtsa和UROtsa/F35细胞中,MAs(III)和DMAs(III)比iAs(III)的细胞毒性更大。MAs(III)或DMAs(III)比iAs(III)更大的细胞毒性与每种甲基化三价砷在细胞内的摄取和滞留增加有关。值得注意的是,UROtsa/F35细胞比原代细胞对iAs(III)的细胞毒性更敏感,但对MAs(III)的细胞毒性更具抗性。UROtsa/F35细胞对iAs(III)敏感性增加与DMA生成的抑制和MAs在细胞内的积累有关。UROtsa/F35细胞对中等浓度MAs(III)的抗性与其快速转化为DMAs以及DMAs的外排有关。然而,抑制UROtsa/F35细胞产生DMAs的MAs(III)浓度对原代细胞系和克隆细胞系具有同等毒性。因此,MAs(III)的产生和积累是导致甲基化细胞中急性iAs暴露毒性的关键因素。

相似文献

1
Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation state)-methyltransferase.
Toxicol Appl Pharmacol. 2005 Sep 1;207(2):147-59. doi: 10.1016/j.taap.2004.12.007.
2
Expression of AS3MT alters transcriptional profiles in human urothelial cells exposed to arsenite.
Hum Exp Toxicol. 2009 Jan;28(1):49-61. doi: 10.1177/0960327109102368.
3
Direct analysis and stability of methylated trivalent arsenic metabolites in cells and tissues.
Metallomics. 2011 Dec;3(12):1347-54. doi: 10.1039/c1mt00095k. Epub 2011 Oct 21.
4
Interspecies differences in metabolism of arsenic by cultured primary hepatocytes.
Toxicol Appl Pharmacol. 2010 May 15;245(1):47-56. doi: 10.1016/j.taap.2010.01.015. Epub 2010 Feb 4.
5
Origins, fate, and actions of methylated trivalent metabolites of inorganic arsenic: progress and prospects.
Arch Toxicol. 2021 May;95(5):1547-1572. doi: 10.1007/s00204-021-03028-w. Epub 2021 Mar 26.
6
Metabolism of arsenic in primary cultures of human and rat hepatocytes.
Chem Res Toxicol. 1999 Jul;12(7):560-5. doi: 10.1021/tx990050l.
9
Metabolism of inorganic arsenic in mice carrying the human AS3MT gene and fed folate deficient or folate supplemented diet.
Toxicol Appl Pharmacol. 2025 Feb;495:117173. doi: 10.1016/j.taap.2024.117173. Epub 2024 Nov 26.
10
Metabolism of arsenic in human liver: the role of membrane transporters.
Arch Toxicol. 2010 Jan;84(1):3-16. doi: 10.1007/s00204-009-0499-7. Epub 2009 Dec 18.

引用本文的文献

3
Low-to-Moderate Arsenic Exposure and Urothelial Tract Cancers with a Long Latent Period of Follow-Up in an Arseniasis Area.
J Epidemiol Glob Health. 2023 Dec;13(4):807-815. doi: 10.1007/s44197-023-00152-x. Epub 2023 Sep 19.
5
ArsZ from Ensifer adhaerens ST2 is a novel methylarsenite oxidase.
Environ Microbiol. 2022 Jul;24(7):3013-3021. doi: 10.1111/1462-2920.15983. Epub 2022 Apr 18.
6
Organoarsenical tolerance in Sphingobacterium wenxiniae, a bacterium isolated from activated sludge.
Environ Microbiol. 2022 Feb;24(2):762-771. doi: 10.1111/1462-2920.15599. Epub 2021 May 27.
7
Arsenic methylation - Lessons from three decades of research.
Toxicology. 2021 Jun 15;457:152800. doi: 10.1016/j.tox.2021.152800. Epub 2021 Apr 24.
8
Arsenic-induced epigenetic changes in cancer development.
Semin Cancer Biol. 2021 Nov;76:195-205. doi: 10.1016/j.semcancer.2021.03.019. Epub 2021 Mar 30.
9
Arsenic Exposure and Compromised Protein Quality Control.
Chem Res Toxicol. 2020 Jul 20;33(7):1594-1604. doi: 10.1021/acs.chemrestox.0c00107. Epub 2020 Jun 2.

本文引用的文献

2
Interindividual variation in the metabolism of arsenic in cultured primary human hepatocytes.
Toxicol Appl Pharmacol. 2004 Dec 1;201(2):166-77. doi: 10.1016/j.taap.2004.05.004.
3
Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes.
Toxicol Appl Pharmacol. 2004 Aug 1;198(3):424-33. doi: 10.1016/j.taap.2003.10.026.
5
Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required.
J Biol Chem. 2004 Jul 30;279(31):32700-8. doi: 10.1074/jbc.M404912200. Epub 2004 May 25.
7
Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae.
J Biol Chem. 2004 Apr 23;279(17):17312-8. doi: 10.1074/jbc.M314006200. Epub 2004 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验