Suppr超能文献

砷在培养的原代肝细胞中的代谢的种间差异。

Interspecies differences in metabolism of arsenic by cultured primary hepatocytes.

机构信息

Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599-7461, USA.

出版信息

Toxicol Appl Pharmacol. 2010 May 15;245(1):47-56. doi: 10.1016/j.taap.2010.01.015. Epub 2010 Feb 4.

Abstract

Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAs methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [(73)As]arsenite (iAs(III); 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 h and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAs(III) to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAs(III) than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAs(III) was associated with inhibition of DMAs production by moderate concentrations of iAs(III) and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also contribute to the interspecies differences in the hepatocyte capacity to methylate iAs.

摘要

生物甲基化是许多哺乳动物物种(包括人类)中无机砷(iAs)代谢的主要途径。然而,在体内代谢 iAs 的速度以及尿液中发现的 iAs 代谢物的产率方面,不同物种之间存在显著差异。肝脏被认为是 iAs 甲基化的主要部位,砷(+3 氧化态)甲基转移酶(As3mt)是该途径的关键酶。因此,肝脏中 As3mt 催化的 iAs 甲基化在一定程度上决定了不同物种中 iAs 代谢的速度和模式。我们检查了源自人类、大鼠、小鼠、狗、兔和恒河猴的原代肝细胞培养物中 iAs 甲基化的动力学和浓度反应模式。将肝细胞暴露于 [(73)As]亚砷酸盐(iAs(III);0.3、0.9、3.0、9.0 或 30 nmol As/mg 蛋白)24 小时,并在细胞和培养基中分析放射性标记的代谢物。六种物种的肝细胞均将 iAs(III)甲基化为甲基砷(MAs)和二甲基砷(DMAs)。值得注意的是,狗、大鼠和猴子的肝细胞比小鼠、兔子或人类的肝细胞更有效地将 iAs(III)甲基化。小鼠、兔子和人类肝细胞将 iAs(III)甲基化为低效率与适量浓度的 iAs(III)抑制 DMAs 产生以及 iAs 和 MAs 在细胞内的保留有关。在 iAs 甲基化速度与硫氧还蛋白还原酶活性或谷胱甘肽浓度之间未发现显著相关性,这两个因素调节重组 As3mt 的活性。在检查的六个物种中,未发现 iAs 甲基化速度与 As3mt 蛋白结构之间的相关性。免疫印迹分析表明,在本研究中检查的狗、大鼠和猴子肝细胞具有较高的砷甲基化能力,可能与 As3mt 表达较高有关。然而,除了 As3mt 表达之外,其他因素也可能导致肝细胞甲基化 iAs 的能力存在种间差异。

相似文献

1
Interspecies differences in metabolism of arsenic by cultured primary hepatocytes.
Toxicol Appl Pharmacol. 2010 May 15;245(1):47-56. doi: 10.1016/j.taap.2010.01.015. Epub 2010 Feb 4.
2
Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation state)-methyltransferase.
Toxicol Appl Pharmacol. 2005 Sep 1;207(2):147-59. doi: 10.1016/j.taap.2004.12.007.
3
Metabolism of arsenic in primary cultures of human and rat hepatocytes.
Chem Res Toxicol. 1999 Jul;12(7):560-5. doi: 10.1021/tx990050l.
5
shRNA silencing of AS3MT expression minimizes arsenic methylation capacity of HepG2 cells.
Chem Res Toxicol. 2006 Jul;19(7):894-8. doi: 10.1021/tx060076u.
6
Metabolism of inorganic arsenic in mice carrying the human AS3MT gene and fed folate deficient or folate supplemented diet.
Toxicol Appl Pharmacol. 2025 Feb;495:117173. doi: 10.1016/j.taap.2024.117173. Epub 2024 Nov 26.
7
Interindividual variation in the metabolism of arsenic in cultured primary human hepatocytes.
Toxicol Appl Pharmacol. 2004 Dec 1;201(2):166-77. doi: 10.1016/j.taap.2004.05.004.
8
Metabolism of arsenic in human liver: the role of membrane transporters.
Arch Toxicol. 2010 Jan;84(1):3-16. doi: 10.1007/s00204-009-0499-7. Epub 2009 Dec 18.
10
Selenium modifies the metabolism and toxicity of arsenic in primary rat hepatocytes.
Toxicol Appl Pharmacol. 2001 Apr 1;172(1):52-61. doi: 10.1006/taap.2001.9134.

引用本文的文献

1
Differential Selectivity of Human and Mouse ABCC4/Abcc4 for Arsenic Metabolites.
Drug Metab Dispos. 2024 Nov 15;52(12):1417-1428. doi: 10.1124/dmd.124.001852.
2
Molecular and Metabolic Analysis of Arsenic-Exposed Humanized AS3MT Mice.
Environ Health Perspect. 2023 Dec;131(12):127021. doi: 10.1289/EHP12785. Epub 2023 Dec 27.
3
Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony.
Cell Mol Life Sci. 2023 Oct 30;80(11):342. doi: 10.1007/s00018-023-04992-5.
5
Zinc supplementation prevents mitotic accumulation in human keratinocyte cell lines upon environmentally relevant arsenic exposure.
Toxicol Appl Pharmacol. 2022 Nov 1;454:116255. doi: 10.1016/j.taap.2022.116255. Epub 2022 Sep 24.
7
Arsenic: Various species with different effects on cytochrome P450 regulation in humans.
EXCLI J. 2021 Jul 12;20:1184-1242. doi: 10.17179/excli2021-3890. eCollection 2021.
8
Environmental chemical exposures in the urine of dogs and people sharing the same households.
J Clin Transl Sci. 2020 Oct 2;5(1):e54. doi: 10.1017/cts.2020.548.
9
Feeding Arsenic-Containing Rice Bran to Growing Pigs: Growth Performance, Arsenic Tissue Distribution, and Arsenic Excretion.
Int J Environ Res Public Health. 2020 Nov 17;17(22):8530. doi: 10.3390/ijerph17228530.
10
Arsenic and Obesity: a Review of Causation and Interaction.
Curr Environ Health Rep. 2020 Sep;7(3):343-351. doi: 10.1007/s40572-020-00288-z.

本文引用的文献

1
Metabolism of arsenic in human liver: the role of membrane transporters.
Arch Toxicol. 2010 Jan;84(1):3-16. doi: 10.1007/s00204-009-0499-7. Epub 2009 Dec 18.
4
High arsenic metabolic efficiency in AS3MT287Thr allele carriers.
Pharmacogenet Genomics. 2008 Apr;18(4):349-55. doi: 10.1097/FPC.0b013e3282f7f46b.
5
Genetic polymorphisms influencing arsenic metabolism: evidence from Argentina.
Environ Health Perspect. 2007 Apr;115(4):599-605. doi: 10.1289/ehp.9734. Epub 2007 Jan 8.
6
High-throughput identification of catalytic redox-active cysteine residues.
Science. 2007 Jan 19;315(5810):387-9. doi: 10.1126/science.1133114.
8
shRNA silencing of AS3MT expression minimizes arsenic methylation capacity of HepG2 cells.
Chem Res Toxicol. 2006 Jul;19(7):894-8. doi: 10.1021/tx060076u.
9
Human arsenic methyltransferase (AS3MT) pharmacogenetics: gene resequencing and functional genomics studies.
J Biol Chem. 2006 Mar 17;281(11):7364-73. doi: 10.1074/jbc.M512227200. Epub 2006 Jan 6.
10
Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation state)-methyltransferase.
Toxicol Appl Pharmacol. 2005 Sep 1;207(2):147-59. doi: 10.1016/j.taap.2004.12.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验