Barratt Elizabeth, Bingham Richard J, Warner Daniel J, Laughton Charles A, Phillips Simon E V, Homans Steve W
Astbury Centre for Structural Molecular Biology, School of Biochemistry & Microbiology, University of Leeds, Leeds LS2 9JT, UK.
J Am Chem Soc. 2005 Aug 24;127(33):11827-34. doi: 10.1021/ja0527525.
In the present study we examine the enthalpy of binding of 2-methoxy-3-isobutylpyrazine (IBMP) to the mouse major urinary protein (MUP), using a combination of isothermal titration calorimetry (ITC), NMR, X-ray crystallography, all-atom molecular dynamics simulations, and site-directed mutagenesis. Global thermodynamics data derived from ITC indicate that binding is driven by favorable enthalpic contributions, rather than a classical entropy-driven signature that might be expected given that the binding pocket of MUP-1 is very hydrophobic. The only ligand-protein hydrogen bond is formed between the side-chain hydroxyl of Tyr120 and the ring nitrogen of the ligand in the wild-type protein. ITC measurements on the binding of IBMP to the Y120F mutant demonstrate a reduced enthalpy of binding, but nonetheless binding is still enthalpy dominated. A combination of solvent isotopic substitution ITC measurements and all-atom molecular dynamics simulations with explicit inclusion of solvent water suggests that solvation is not a major contributor to the overall binding enthalpy. Moreover, hydrogen/deuterium exchange measurements suggest that there is no significant contribution to the enthalpy of binding derived from "tightening" of the protein structure. Data are consistent with binding thermodynamics dominated by favorable dispersion interactions, arising from the inequality of solvent-solute dispersion interactions before complexation versus solute-solute dispersion interactions after complexation, by virtue of poor solvation of the binding pocket.
在本研究中,我们结合等温滴定量热法(ITC)、核磁共振(NMR)、X射线晶体学、全原子分子动力学模拟和定点诱变技术,研究了2-甲氧基-3-异丁基吡嗪(IBMP)与小鼠主要尿蛋白(MUP)的结合焓。ITC得出的全局热力学数据表明,结合是由有利的焓贡献驱动的,而不是经典的熵驱动特征,鉴于MUP-1的结合口袋非常疏水,原本可能会预期出现这种特征。在野生型蛋白质中,唯一的配体-蛋白质氢键是由Tyr120的侧链羟基与配体的环氮之间形成的。对IBMP与Y120F突变体结合的ITC测量表明结合焓降低,但结合仍然以焓为主导。溶剂同位素取代ITC测量与明确包含溶剂水的全原子分子动力学模拟相结合表明,溶剂化不是整体结合焓的主要贡献因素。此外,氢/氘交换测量表明,蛋白质结构“收紧”对结合焓没有显著贡献。数据与结合热力学一致,这种热力学由有利的色散相互作用主导,这种相互作用源于络合前溶剂-溶质色散相互作用与络合后溶质-溶质色散相互作用的不平等,这是由于结合口袋的溶剂化不良所致。