Med Tekh. 2005 May-Jun(3):27-32.
Work is devoted to synthesis of mathematical models (MM) which describe probability of appearance of radiation complication (ARC) in a tissue at the Klepper's fixed scheme of dose fractionation (FD) and Ellis's MM, which describes equivalent schemes FD for fixed value ARC. Creation of synthesized mathematical models(S) appears possible at some assumptions which require a check on the basis of the clinical information are necessary for definition of optimum dynamic conditions of an radiation of cancerous growths which include the optimum physical radiation plan and the optimum scheme its realization in time. The synthesis of MM leads to natural appearance of radiological invariants (constants) which can become a basis for construction of a new scientific direction of quantitative radiology.
工作致力于数学模型(MM)的合成,这些模型描述了在克莱珀固定剂量分割方案(FD)下组织中出现放射并发症(ARC)的概率,以及埃利斯的MM,该模型描述了固定ARC值的等效FD方案。在某些假设下似乎有可能创建合成数学模型(S),而这些假设需要根据临床信息进行检验,这对于确定癌性肿瘤放射的最佳动态条件是必要的,这些条件包括最佳物理放射计划及其在时间上的最佳实现方案。MM的合成导致了放射学不变量(常数)的自然出现,这可为构建定量放射学的新科学方向奠定基础。