Klepper L Ia
Med Tekh. 2006 Jan-Feb(1):23-7.
The goal of this work was to synthesize a mathematical model (MM) on the basis of Klepper and Lyman MMs, which describe the probability of post-radiation complications (PRC) in tissue subjected to radiation therapy with given scheme of dose fractionating (DF), and the LQ-model, which describes equivalent DF schemes for a fixed PRC value. Construction of synthesized MMs (SMMs) becomes possible only on the basis of several assumptions requiring further clinical validation. Synthesized MMs can be used for determination of the optimal dynamic conditions of irradiation of malignant tumors. These conditions include the optimal physical plan of irradiation and the optimal time scheme of its implementation. Synthesis of MMs leads to determination of radiological invariants (constants), which can become a basis for a new branch of medical science, quantitative radiology.
这项工作的目标是在克莱珀(Klepper)模型和莱曼(Lyman)模型的基础上合成一个数学模型(MM),这两个模型描述了在给定剂量分割(DF)方案的放射治疗中组织发生放射后并发症(PRC)的概率,以及LQ模型,该模型描述了对于固定PRC值的等效DF方案。只有基于几个需要进一步临床验证的假设,才有可能构建合成数学模型(SMM)。合成数学模型可用于确定恶性肿瘤照射的最佳动态条件。这些条件包括最佳的物理照射计划及其实施的最佳时间方案。数学模型的合成导致确定放射学不变量(常数),这可以成为医学科学新分支——定量放射学的基础。