Suppr超能文献

基于归一化互信息的配准,采用k均值聚类和阴影校正。

Normalized mutual information based registration using k-means clustering and shading correction.

作者信息

Knops Z F, Maintz J B A, Viergever M A, Pluim J P W

机构信息

Utrecht University, Department of Computer Science, P.O. Box 80089, NL-3508 TB Utrecht, The Netherlands.

出版信息

Med Image Anal. 2006 Jun;10(3):432-9. doi: 10.1016/j.media.2005.03.009. Epub 2005 Aug 18.

Abstract

In this paper the influence of intensity clustering and shading correction on mutual information based image registration is studied. Instead of the generally used equidistant re-binning, we use k-means clustering in order to achieve a more natural binning of the intensity distribution. Secondly, image inhomogeneities occurring notably in MR images can have adverse effects on the registration. We use a shading correction method in order to reduce these effects. The method is validated on clinical MR, CT and PET images, as well as synthetic MR images. It is shown that by employing clustering with inhomogeneity correction the number of misregistrations is reduced without loss of accuracy thus increasing robustness as compared to the standard non-inhomogeneity corrected and equidistant binning based registration.

摘要

本文研究了强度聚类和阴影校正对基于互信息的图像配准的影响。我们使用k均值聚类,而不是通常使用的等距重新分箱,以实现强度分布更自然的分箱。其次,在磁共振图像中显著出现的图像不均匀性可能对配准产生不利影响。我们使用一种阴影校正方法来减少这些影响。该方法在临床磁共振、计算机断层扫描和正电子发射断层扫描图像以及合成磁共振图像上得到了验证。结果表明,与基于标准非不均匀性校正和等距分箱的配准相比,通过采用聚类和不均匀性校正,配准错误的数量减少,而不会损失准确性,从而提高了鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验