Suppr超能文献

基于异质图神经网络的 scRNA-seq 数据结构保持集成。

Structure-preserved integration of scRNA-seq data using heterogeneous graph neural network.

机构信息

School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae538.

Abstract

The integration of single-cell RNA sequencing (scRNA-seq) data from multiple experimental batches enables more comprehensive characterizations of cell states. Given that existing methods disregard the structural information between cells and genes, we proposed a structure-preserved scRNA-seq data integration approach using heterogeneous graph neural network (scHetG). By establishing a heterogeneous graph that represents the interactions between multiple batches of cells and genes, and combining a heterogeneous graph neural network with contrastive learning, scHetG concurrently obtained cell and gene embeddings with structural information. A comprehensive assessment covering different species, tissues and scales indicated that scHetG is an efficacious method for eliminating batch effects while preserving the structural information of cells and genes, including batch-specific cell types and cell-type specific gene co-expression patterns.

摘要

单细胞 RNA 测序(scRNA-seq)数据的整合来自多个实验批次,可以更全面地描述细胞状态。鉴于现有方法忽略了细胞和基因之间的结构信息,我们提出了一种使用异质图神经网络(scHetG)保留结构的 scRNA-seq 数据整合方法。通过建立一个表示多个批次的细胞和基因之间相互作用的异质图,并结合异质图神经网络和对比学习,scHetG 同时获得了具有结构信息的细胞和基因嵌入。涵盖不同物种、组织和规模的综合评估表明,scHetG 是一种有效的方法,可以消除批次效应,同时保留细胞和基因的结构信息,包括批次特异性细胞类型和细胞类型特异性基因共表达模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3e6/11500609/dea1ac337b0b/bbae538f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验