Suppr超能文献

RNA干扰的治疗潜力。

The therapeutic potential of RNA interference.

作者信息

Uprichard Susan L

机构信息

Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, SBR10, La Jolla, CA 92037, USA.

出版信息

FEBS Lett. 2005 Oct 31;579(26):5996-6007. doi: 10.1016/j.febslet.2005.08.004. Epub 2005 Aug 15.

Abstract

In recent years, we have witnessed the discovery of a new mechanism of gene regulation called RNA interference (RNAi), which has revitalized interest in the development of nucleic acid-based technologies for therapeutic gene suppression. This review focuses on the potential therapeutic use of RNAi, discussing the theoretical advantages of RNAi-based therapeutics over previous technologies as well as the challenges involved in developing RNAi for clinical use. Also reviewed, are the in vivo proof-of principle experiments that provide the preclinical justification for the continued development of RNAi-based therapeutics.

摘要

近年来,我们见证了一种名为RNA干扰(RNAi)的基因调控新机制的发现,这重新激发了人们对开发基于核酸的治疗性基因抑制技术的兴趣。本综述聚焦于RNAi的潜在治疗用途,讨论基于RNAi的疗法相对于先前技术的理论优势以及开发临床用RNAi所涉及的挑战。此外,还回顾了体内原理验证实验,这些实验为基于RNAi的疗法的持续开发提供了临床前依据。

相似文献

1
The therapeutic potential of RNA interference.
FEBS Lett. 2005 Oct 31;579(26):5996-6007. doi: 10.1016/j.febslet.2005.08.004. Epub 2005 Aug 15.
2
Therapeutic potential of RNAi in metabolic diseases.
Biotechniques. 2006 Apr;Suppl:31-6. doi: 10.2144/000112163.
4
Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.
Early Hum Dev. 2009 Oct;85(10 Suppl):S31-5. doi: 10.1016/j.earlhumdev.2009.08.013. Epub 2009 Oct 14.
5
In vivo application of RNA interference: from functional genomics to therapeutics.
Adv Genet. 2005;54:117-42. doi: 10.1016/S0065-2660(05)54006-9.
6
Progress in RNAi-based antiviral therapeutics.
Methods Mol Biol. 2011;721:67-75. doi: 10.1007/978-1-61779-037-9_4.
7
Combined lentiviral and RNAi technologies for the delivery and permanent silencing of the hsp25 gene.
Methods Mol Biol. 2011;787:121-36. doi: 10.1007/978-1-61779-295-3_10.
8
Development of RNA interference-based therapeutics and application of multi-target small interfering RNAs.
Nucleic Acid Ther. 2014 Aug;24(4):302-12. doi: 10.1089/nat.2014.0480. Epub 2014 May 5.
9
Development of resistance to RNAi in mammalian cells.
Ann N Y Acad Sci. 2005 Nov;1058:105-18. doi: 10.1196/annals.1359.019.
10
RNAi therapeutic and its innovative biotechnological evolution.
Biotechnol Adv. 2019 Sep-Oct;37(5):801-825. doi: 10.1016/j.biotechadv.2019.04.012. Epub 2019 Apr 26.

引用本文的文献

1
Aurora kinases signaling in cancer: from molecular perception to targeted therapies.
Mol Cancer. 2025 Jun 18;24(1):180. doi: 10.1186/s12943-025-02353-3.
2
Multiplexed shRNA-miRs as a candidate for anti HIV-1 therapy: strategies, challenges, and future potential.
J Genet Eng Biotechnol. 2022 Dec 28;20(1):172. doi: 10.1186/s43141-022-00451-z.
3
Strategies to Inhibit Hepatitis B Virus at the Transcript Level.
Viruses. 2021 Jul 9;13(7):1327. doi: 10.3390/v13071327.
4
Ubiquitin-Conjugating Enzymes in Cancer.
Cells. 2021 Jun 4;10(6):1383. doi: 10.3390/cells10061383.
5
Nucleic acid-based therapy for coronavirus disease 2019.
Heliyon. 2020 Sep;6(9):e05007. doi: 10.1016/j.heliyon.2020.e05007. Epub 2020 Sep 19.
6
RNAi technique, how far is it from pediatrics?
Pediatr Investig. 2017 Dec 27;1(1):40-46. doi: 10.1002/ped4.12004. eCollection 2017 Dec.
7
knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity.
Acta Pharm Sin B. 2020 Feb;10(2):358-373. doi: 10.1016/j.apsb.2019.07.004. Epub 2019 Jul 23.
8
Nanoparticles Targeting STATs in Cancer Therapy.
Cells. 2019 Sep 27;8(10):1158. doi: 10.3390/cells8101158.
9
Dendrimer- and copolymer-based nanoparticles for magnetic resonance cancer theranostics.
Theranostics. 2018 Nov 29;8(22):6322-6349. doi: 10.7150/thno.27828. eCollection 2018.
10
miRNAs in Tuberculosis: New Avenues for Diagnosis and Host-Directed Therapy.
Front Microbiol. 2018 Mar 29;9:602. doi: 10.3389/fmicb.2018.00602. eCollection 2018.

本文引用的文献

1
Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration.
Can J Ophthalmol. 2005 Jun;40(3):352-68. doi: 10.1016/S0008-4182(05)80078-X.
2
c-Myc-regulated microRNAs modulate E2F1 expression.
Nature. 2005 Jun 9;435(7043):839-43. doi: 10.1038/nature03677.
3
MicroRNA expression profiles classify human cancers.
Nature. 2005 Jun 9;435(7043):834-8. doi: 10.1038/nature03702.
4
A microRNA polycistron as a potential human oncogene.
Nature. 2005 Jun 9;435(7043):828-33. doi: 10.1038/nature03552.
5
The benefit/risk profile of TNF-blocking agents: findings of a consensus panel.
Semin Arthritis Rheum. 2005 Jun;34(6):819-36. doi: 10.1016/j.semarthrit.2004.11.006.
6
A virus-encoded inhibitor that blocks RNA interference in mammalian cells.
J Virol. 2005 Jun;79(12):7371-9. doi: 10.1128/JVI.79.12.7371-7379.2005.
7
Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors.
Nat Biotechnol. 2005 Jun;23(6):709-17. doi: 10.1038/nbt1101. Epub 2005 May 22.
8
Survivin-directed RNA interference cocktail is a potent suppressor of tumour growth in vivo.
J Med Genet. 2006 Feb;43(2):119-28. doi: 10.1136/jmg.2005.034686. Epub 2005 May 20.
9
Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing.
Immunity. 2005 May;22(5):607-19. doi: 10.1016/j.immuni.2005.03.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验