Grillner Sten, Markram Henry, De Schutter Erik, Silberberg Gilad, LeBeau Fiona E N
Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm, Sweden.
Trends Neurosci. 2005 Oct;28(10):525-33. doi: 10.1016/j.tins.2005.08.003.
To understand the interface between global brain function and molecular neuroscience--that is, the microcircuit level--a major challenge. Such understanding is prerequisite if we are to account for neural function in cellular terms. Very few vertebrate microcircuits are yet understood because their analysis is demanding technically. In this review of the TINS Microcircuits Special Feature, we attempt to shed light on the problem by comparing the operation of four types of microcircuit, to identify common molecular and cellular components. Central pattern generator (CPG) networks underlying rhythmic movements and hippocampal microcircuits that generate gamma and theta rhythms are compared with the neocortical microcircuits used in cognitive tasks and a cerebellar network. The long-term goal is to identify the components of a molecular and synaptic tool kit for the design of different microcircuits.
理解全球脑功能与分子神经科学之间的接口——即微电路层面——是一项重大挑战。如果我们要从细胞层面解释神经功能,这种理解是必不可少的。目前只有极少数脊椎动物微电路得到了解,因为对它们的分析在技术上要求很高。在这篇对《神经科学趋势》微电路专题的综述中,我们试图通过比较四种类型微电路的运作来阐明这个问题,以识别共同的分子和细胞成分。将产生节律性运动的中枢模式发生器(CPG)网络以及产生γ和θ节律的海马微电路与用于认知任务的新皮质微电路和一个小脑网络进行比较。长期目标是识别用于设计不同微电路的分子和突触工具包的成分。