Krausz Elmars, Hughes Joseph L, Smith Paul, Pace Ron, Peterson Arsköld Sindra
Research School of Chemistry, Australian National University, Canberra, Australia.
Photochem Photobiol Sci. 2005 Sep;4(9):744-53. doi: 10.1039/b417905f. Epub 2005 Jun 27.
We review our recent low-temperature absorption, circular dichroism (CD), magnetic CD (MCD), fluorescence and laser-selective measurements of oxygen-evolving Photosystem II (PSII) core complexes and their constituent CP 4 3, CP 47 and D1/D2/cytb(559) sub-assemblies. Quantitative comparisons reveal that neither absorption nor fluorescence spectra of core complexes are simple additive combinations of the spectra of the sub-assemblies. The absorption spectrum of the D1/D2/cytb(559) component embedded within the core complex appears significantly better structured and red-shifted compared to that of the isolated sub-assembly. A characteristic MCD reduction or 'deficit' is a useful signature for the central chlorins in the reaction centre. We note a congruence of the MCD deficit spectra of the isolated D1/D2/cytb(559) sub-assemblies to their laser-induced transient bleaches associated with P 680. A comparison of spectra of core complexes prepared from different organisms helps distinguish features due to inner light-harvesting assemblies and the central reaction-centre chlorins. Electrochromic spectral shifts in core complexes that occur following low-temperature illumination of active core complexes arise from efficient charge separation and subsequent plastoquinone anion (Q(A)(-)) formation. Such measurements allow determinations of both charge-separation efficiencies and spectral characteristics of the primary acceptor, Pheo(D1). Efficient charge separation occurs with excitation wavelengths as long as 700 nm despite the illuminations being performed at 1.7 K and with an extremely low level of incident power density. A weak, homogeneously broadened, charge-separating state of PSII lies obscured beneath the CP 47 state centered at 690 nm. We present new data in the 690-760 nm region, clearly identifying a band extending to 730 nm. Active core complexes show remarkably strong persistent spectral hole-burning activity in spectral regions attributable to CP 43 and CP 47. Measurements of homogeneous hole-widths have established that, at low temperatures, excitation transfer from these inner light-harvesting assemblies to the reaction centre occurs with approximately 70-270 ps(-1) rates, when the quinone acceptor is reduced. The rate is slower for lower-energy sub-populations of an inhomogeneously broadened antenna (trap) pigment. The complex low-temperature fluorescence behaviour seen in PSII is explicable in terms of slow excitation transfer from traps to the weak low-energy charge-separating state and transfer to the more intense reaction-centre excitations near 685 nm. The nature and origin of the charge-separating state in oxygen-evolving PSII preparations is briefly discussed.
我们回顾了近期对放氧光系统II(PSII)核心复合物及其组成部分CP 43、CP 47和D1/D2/cytb(559)亚组装体进行的低温吸收、圆二色性(CD)、磁圆二色性(MCD)、荧光和激光选择性测量。定量比较表明,核心复合物的吸收光谱和荧光光谱都不是亚组装体光谱的简单加和组合。与分离的亚组装体相比,嵌入核心复合物中的D1/D2/cytb(559)组分的吸收光谱结构明显更好且发生了红移。反应中心中中心二氢卟酚的一个特征性MCD降低或“亏缺”是一个有用的特征标记。我们注意到分离的D1/D2/cytb(559)亚组装体的MCD亏缺光谱与其与P 680相关的激光诱导瞬态漂白一致。对不同生物体制备的核心复合物光谱的比较有助于区分由于内部光捕获组装体和中心反应中心二氢卟酚引起的特征。活性核心复合物在低温光照后发生的核心复合物中的电致变色光谱位移源于有效的电荷分离和随后质体醌阴离子(Q(A)(-))的形成。此类测量允许确定电荷分离效率和初级受体Pheo(D1)的光谱特征。尽管在1.7 K下进行光照且入射功率密度极低,但激发波长长达700 nm时仍能发生有效的电荷分离。PSII中一个微弱的、均匀展宽的电荷分离态隐藏在以690 nm为中心的CP 47态之下。我们在690 - 760 nm区域给出了新数据,清晰地识别出一条延伸至730 nm的谱带。活性核心复合物在归因于CP 43和CP 47的光谱区域表现出非常强的持续光谱烧孔活性。对均匀孔宽度的测量表明,在低温下,当醌受体被还原时,从这些内部光捕获组装体到反应中心的激发转移速率约为70 - 270 ps(-1)。对于非均匀展宽天线(陷阱)色素的低能亚群,该速率较慢。PSII中观察到的复杂低温荧光行为可以用从陷阱到微弱低能电荷分离态的缓慢激发转移以及到685 nm附近更强的反应中心激发的转移来解释。简要讨论了放氧PSII制剂中电荷分离态的性质和起源。