Raszewski Grzegorz, Diner Bruce A, Schlodder Eberhard, Renger Thomas
Institut für Chemie und Biochemie Kristallographie, Freie Universität Berlin, Berlin, Germany.
Biophys J. 2008 Jul;95(1):105-19. doi: 10.1529/biophysj.107.123935. Epub 2008 Mar 13.
Absorbance difference spectra associated with the light-induced formation of functional states in photosystem II core complexes from Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 (e.g., P(+)Pheo(-),P(+)Q(A)(-),(3)P) are described quantitatively in the framework of exciton theory. In addition, effects are analyzed of site-directed mutations of D1-His(198), the axial ligand of the special-pair chlorophyll P(D1), and D1-Thr(179), an amino-acid residue nearest to the accessory chlorophyll Chl(D1), on the spectral properties of the reaction center pigments. Using pigment transition energies (site energies) determined previously from independent experiments on D1-D2-cytb559 complexes, good agreement between calculated and experimental spectra is obtained. The only difference in site energies of the reaction center pigments in D1-D2-cytb559 and photosystem II core complexes concerns Chl(D1). Compared to isolated reaction centers, the site energy of Chl(D1) is red-shifted by 4 nm and less inhomogeneously distributed in core complexes. The site energies cause primary electron transfer at cryogenic temperatures to be initiated by an excited state that is strongly localized on Chl(D1) rather than from a delocalized state as assumed in the previously described multimer model. This result is consistent with earlier experimental data on special-pair mutants and with our previous calculations on D1-D2-cytb559 complexes. The calculations show that at 5 K the lowest excited state of the reaction center is lower by approximately 10 nm than the low-energy exciton state of the two special-pair chlorophylls P(D1) and P(D2) which form an excitonic dimer. The experimental temperature dependence of the wild-type difference spectra can only be understood in this model if temperature-dependent site energies are assumed for Chl(D1) and P(D1), reducing the above energy gap from 10 to 6 nm upon increasing the temperature from 5 to 300 K. At physiological temperature, there are considerable contributions from all pigments to the equilibrated excited state P*. The contribution of Chl(D1) is twice that of P(D1) at ambient temperature, making it likely that the primary charge separation will be initiated by Chl(D1) under these conditions. The calculations of absorbance difference spectra provide independent evidence that after primary electron transfer the hole stabilizes at P(D1), and that the physiologically dangerous charge recombination triplets, which may form under light stress, equilibrate between Chl(D1) and P(D1).
在激子理论框架下,定量描述了与嗜热栖热放线菌和集胞藻PCC 6803光系统II核心复合物中光诱导功能状态形成相关的吸光度差光谱(例如,P(+)Pheo(-)、P(+)Q(A)(-)、(3)P)。此外,还分析了特殊对叶绿素P(D1)的轴向配体D1-His(198)以及最靠近辅助叶绿素Chl(D1)的氨基酸残基D1-Thr(179)的定点突变对反应中心色素光谱特性的影响。利用先前在D1-D2-cytb559复合物独立实验中确定的色素跃迁能量(位点能量),计算光谱与实验光谱取得了良好的一致性。D1-D2-cytb559和光系统II核心复合物中反应中心色素位点能量的唯一差异涉及Chl(D1)。与分离的反应中心相比,Chl(D1)的位点能量红移了4 nm,并且在核心复合物中的分布不均匀性较小。这些位点能量导致低温下的初级电子转移由强烈定域在Chl(D1)上的激发态引发,而不是如先前描述的多聚体模型中假设的离域态。这一结果与先前关于特殊对突变体的实验数据以及我们之前对D1-D2-cytb559复合物的计算结果一致。计算表明,在5 K时,反应中心的最低激发态比形成激子二聚体的两个特殊对叶绿素P(D1)和P(D2)的低能激子态低约10 nm。只有假设Chl(D1)和P(D1)的位点能量与温度有关,将上述能隙从10 nm减小到6 nm(温度从5 K升高到300 K),才能在该模型中理解野生型差光谱的实验温度依赖性。在生理温度下,所有色素对平衡激发态P*都有相当大的贡献。在环境温度下,Chl(D1)的贡献是P(D1)的两倍,这使得在这些条件下初级电荷分离很可能由Chl(D1)引发。吸光度差光谱的计算提供了独立证据,表明初级电子转移后空穴稳定在P(D1),并且在光胁迫下可能形成的生理上危险的电荷复合三重态在Chl(D1)和P(D1)之间达到平衡。