Chen Yixin, Wang James Z, Krovetz Robert
Department of Computer Science, University of New Orleans, New Orleans, LA 70148, USA.
IEEE Trans Image Process. 2005 Aug;14(8):1187-201. doi: 10.1109/tip.2005.849770.
In a typical content-based image retrieval (CBIR) system, target images (images in the database) are sorted by feature similarities with respect to the query. Similarities among target images are usually ignored. This paper introduces a new technique, cluster-based retrieval of images by unsupervised learning (CLUE), for improving user interaction with image retrieval systems by fully exploiting the similarity information. CLUE retrieves image clusters by applying a graph-theoretic clustering algorithm to a collection of images in the vicinity of the query. Clustering in CLUE is dynamic. In particular, clusters formed depend on which images are retrieved in response to the query. CLUE can be combined with any real-valued symmetric similarity measure (metric or nonmetric). Thus, it may be embedded in many current CBIR systems, including relevance feedback systems. The performance of an experimental image retrieval system using CLUE is evaluated on a database of around 60,000 images from COREL. Empirical results demonstrate improved performance compared with a CBIR system using the same image similarity measure. In addition, results on images returned by Google's Image Search reveal the potential of applying CLUE to real-world image data and integrating CLUE as a part of the interface for keyword-based image retrieval systems.
在典型的基于内容的图像检索(CBIR)系统中,目标图像(数据库中的图像)会根据与查询的特征相似度进行排序。目标图像之间的相似度通常被忽略。本文介绍了一种新技术,即基于无监督学习的图像聚类检索(CLUE),通过充分利用相似度信息来改善用户与图像检索系统的交互。CLUE通过将图论聚类算法应用于查询附近的图像集合来检索图像聚类。CLUE中的聚类是动态的。具体而言,形成的聚类取决于响应查询而检索到的图像。CLUE可以与任何实值对称相似度度量(度量或非度量)相结合。因此,它可以嵌入到许多当前的CBIR系统中,包括相关反馈系统。在一个来自COREL的约60,000幅图像的数据库上评估了使用CLUE的实验性图像检索系统的性能。实证结果表明,与使用相同图像相似度度量的CBIR系统相比,性能有所提高。此外,谷歌图像搜索返回的图像结果揭示了将CLUE应用于真实世界图像数据并将CLUE集成作为基于关键字的图像检索系统界面一部分的潜力。