Suppr超能文献

细菌铁载体在还原条件下促进二氧化铀的溶解。

Bacterial siderophores promote dissolution of UO2 under reducing conditions.

作者信息

Frazier Scott W, Kretzschmar Ruben, Kraemer Stephan M

机构信息

Institute of Terrestrial Ecology, Swiss Federal Institute of Technology Zürich, Grabenstrasse 3, Schlieren CH-8952, Switzerland.

出版信息

Environ Sci Technol. 2005 Aug 1;39(15):5709-15. doi: 10.1021/es050270n.

Abstract

Tetravalent actinides are often considered environmentally immobile due to their strong hydrolysis and formation of sparingly soluble oxide phases. However, biogenic ligands commonly found in the soil environment may increase their solubility and mobility. We studied the adsorption and dissolution kinetics of UO2 in the presence of a microbial siderophore, desferrioxamine-B (DFO-B), under reducing conditions. Using batch and continuous flow stirred tank reactors (CFSTR),we found that DFO-B increases the solubility of UIV and accelerates UO2 dissolution rates through a ligand-promoted dissolution mechanism. DFO-B adsorption to UO2 followed a Langmuir-type isotherm. The maximum adsorbed DFO-B concentrations were 3.3 micromol m(-2) between pH 3 and 8 and declined above pH 8. DFO-B dissolved UO2 at a DFO-B surface-saturated net rate of 64 nmol h(-1) m(-2) (pH 7.5, l = 0.01 M) according to the first-order rate equation R = kL[Lads], with a rate coefficient kL of 0.019 h(-1). Even at very low siderophore concentrations (e.g. 1 microM), net dissolution rates (16 nmol h(-1) m(-2), pH 7.5, l = 0.01 M) were substantially greater than net proton-promoted dissolution rates (3 nmol h(-1) m(-2), pH 7-7.5, l = 0.01 M). Interestingly, adding dissolved FeIII had negligible effects on DFO-B-promoted UO2 dissolution rates, despite its potential as a competitor for DFO-B and as an oxidant of UIV. Our results suggest that strong organic ligands could influence the environmental mobility of tetravalent actinides and should be considered in predictions for nuclear waste storage and remediation strategies.

摘要

由于四价锕系元素强烈水解并形成难溶性氧化物相,它们通常被认为在环境中不易迁移。然而,土壤环境中常见的生物配体可能会增加其溶解度和迁移性。我们研究了在还原条件下,微生物铁载体去铁胺-B(DFO-B)存在时UO₂的吸附和解离动力学。使用间歇式和连续流动搅拌槽反应器(CFSTR),我们发现DFO-B通过配体促进的解离机制提高了UIV的溶解度并加速了UO₂的解离速率。DFO-B在UO₂上的吸附遵循朗缪尔型等温线。在pH值为3至8之间,最大吸附DFO-B浓度为3.3微摩尔每平方米,在pH值高于8时下降。根据一级速率方程R = kL[Lads],DFO-B以64纳摩尔每小时每平方米的DFO-B表面饱和净速率溶解UO₂(pH 7.5,l = 0.01 M),速率系数kL为0.019每小时。即使在非常低的铁载体浓度下(例如1微摩尔),净解离速率(16纳摩尔每小时每平方米,pH 7.5,l = 0.01 M)也显著大于质子促进的净解离速率(3纳摩尔每小时每平方米,pH 7 - 7.5,l = 0.01 M)。有趣的是,添加溶解的FeIII对DFO-B促进的UO₂解离速率影响可忽略不计,尽管它有可能作为DFO-B的竞争者和UIV的氧化剂。我们的结果表明,强有机配体可能会影响四价锕系元素在环境中的迁移性,在核废料储存和修复策略的预测中应予以考虑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验