Rogiers Tom, Van Houdt Rob, Williamson Adam, Leys Natalie, Boon Nico, Mijnendonckx Kristel
Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.
Front Microbiol. 2022 Mar 10;13:822197. doi: 10.3389/fmicb.2022.822197. eCollection 2022.
Environmental uranium pollution due to industries producing naturally occurring radioactive material or nuclear accidents and releases is a global concern. Uranium is hazardous for ecosystems as well as for humans when accumulated through the food chain, through contaminated groundwater and potable water sources, or through inhalation. In particular, uranium pollution pressures microbial communities, which are essential for healthy ecosystems. In turn, microorganisms can influence the mobility and toxicity of uranium through processes like biosorption, bioreduction, biomineralization, and bioaccumulation. These processes were characterized by studying the interaction of different bacteria with uranium. However, most studies unraveling the underlying molecular mechanisms originate from the last decade. Molecular mechanisms help to understand how bacteria interact with radionuclides in the environment. Furthermore, knowledge on these underlying mechanisms could be exploited to improve bioremediation technologies. Here, we review the current knowledge on bacterial uranium resistance and how this could be used for bioremediation applications.
由生产天然放射性物质的工业活动或核事故及核泄漏导致的环境铀污染是一个全球性问题。当铀通过食物链、受污染的地下水和饮用水源或吸入途径累积时,对生态系统和人类都具有危害性。特别是,铀污染会对微生物群落造成压力,而微生物群落对于健康的生态系统至关重要。反过来,微生物可以通过生物吸附、生物还原、生物矿化和生物积累等过程影响铀的迁移性和毒性。这些过程是通过研究不同细菌与铀的相互作用来表征的。然而,大多数揭示其潜在分子机制的研究都始于过去十年。分子机制有助于理解细菌如何与环境中的放射性核素相互作用。此外,关于这些潜在机制的知识可用于改进生物修复技术。在此,我们综述了关于细菌铀抗性的现有知识以及如何将其用于生物修复应用。