Suppr超能文献

配体诱导的化学成因铀矿和缺氧条件下生物成因非晶铀(IV)中的 U 释放。

Ligand-Induced U Mobilization from Chemogenic Uraninite and Biogenic Noncrystalline U(IV) under Anoxic Conditions.

机构信息

Centre for Microbiology and Environmental Systems Science, Department for Environmental Geosciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.

Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Note Dame, Indiana 46556, United States.

出版信息

Environ Sci Technol. 2022 May 17;56(10):6369-6379. doi: 10.1021/acs.est.1c07919. Epub 2022 May 6.

Abstract

Microbial reduction of soluble hexavalent uranium (U(VI)) to sparingly soluble tetravalent uranium (U(IV)) has been explored as an strategy to immobilize U. Organic ligands might pose a potential hindrance to the success of such remediation efforts. In the current study, a set of structurally diverse organic ligands were shown to enhance the dissolution of crystalline uraninite (UO) for a wide range of ligand concentrations under anoxic conditions at pH 7.0. Comparisons were made to ligand-induced U mobilization from noncrystalline U(IV). For both U phases, aqueous U concentrations remained low in the absence of organic ligands (<25 nM for UO; 300 nM for noncrystalline U(IV)). The tested organic ligands (2,6-pyridinedicarboxylic acid (DPA), desferrioxamine B (DFOB), ,'-di(2-hydroxybenzyl)ethylene-diamine-,'-diacetic acid (HBED), and citrate) enhanced U mobilization to varying extents. Over 45 days, the ligands mobilized only up to 0.3% of the 370 μM UO, while a much larger extent of the 300 μM of biomass-bound noncrystalline U(IV) was mobilized (up to 57%) within only 2 days (>500 times more U mobilization). This work shows the potential of numerous organic ligands present in the environment to mobilize both recalcitrant and labile U forms under anoxic conditions to hazardous levels and, in doing so, undermine the stability of immobilized U(IV) sources.

摘要

微生物将可溶性六价铀(U(VI))还原为难溶性四价铀(U(IV)),已被探索作为一种固定铀的策略。有机配体可能会对这种修复努力的成功构成潜在的障碍。在当前的研究中,一组结构多样的有机配体被证明在缺氧条件下、pH 值为 7.0 时,可以增强多种配体浓度下晶质铀矿(UO)的溶解。还比较了配体对非晶质 U(IV)中铀的迁移作用。对于这两种 U 相,在没有有机配体的情况下,水溶液中的 U 浓度保持在低水平(UO 时<25 nM;非晶质 U(IV)时 300 nM)。测试的有机配体(2,6-吡啶二甲酸(DPA)、去铁胺 B(DFOB)、二亚乙基三胺五乙酸(HBED)和柠檬酸盐)在不同程度上增强了 U 的迁移。在 45 天内,配体仅迁移了 370 μM UO 的 0.3%,而在 2 天内,迁移了 300 μM 生物量结合的非晶质 U(IV)的大部分(高达 57%)(迁移的 U 量多 500 倍以上)。这项工作表明,环境中存在的许多有机配体有可能在缺氧条件下将顽固和不稳定的 U 形式迁移到危险水平,并因此破坏固定化 U(IV)源的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17df/9118557/c5a1efbfc11a/es1c07919_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验