Centre for Microbiology and Environmental Systems Science, Department for Environmental Geosciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Note Dame, Indiana 46556, United States.
Environ Sci Technol. 2022 May 17;56(10):6369-6379. doi: 10.1021/acs.est.1c07919. Epub 2022 May 6.
Microbial reduction of soluble hexavalent uranium (U(VI)) to sparingly soluble tetravalent uranium (U(IV)) has been explored as an strategy to immobilize U. Organic ligands might pose a potential hindrance to the success of such remediation efforts. In the current study, a set of structurally diverse organic ligands were shown to enhance the dissolution of crystalline uraninite (UO) for a wide range of ligand concentrations under anoxic conditions at pH 7.0. Comparisons were made to ligand-induced U mobilization from noncrystalline U(IV). For both U phases, aqueous U concentrations remained low in the absence of organic ligands (<25 nM for UO; 300 nM for noncrystalline U(IV)). The tested organic ligands (2,6-pyridinedicarboxylic acid (DPA), desferrioxamine B (DFOB), ,'-di(2-hydroxybenzyl)ethylene-diamine-,'-diacetic acid (HBED), and citrate) enhanced U mobilization to varying extents. Over 45 days, the ligands mobilized only up to 0.3% of the 370 μM UO, while a much larger extent of the 300 μM of biomass-bound noncrystalline U(IV) was mobilized (up to 57%) within only 2 days (>500 times more U mobilization). This work shows the potential of numerous organic ligands present in the environment to mobilize both recalcitrant and labile U forms under anoxic conditions to hazardous levels and, in doing so, undermine the stability of immobilized U(IV) sources.
微生物将可溶性六价铀(U(VI))还原为难溶性四价铀(U(IV)),已被探索作为一种固定铀的策略。有机配体可能会对这种修复努力的成功构成潜在的障碍。在当前的研究中,一组结构多样的有机配体被证明在缺氧条件下、pH 值为 7.0 时,可以增强多种配体浓度下晶质铀矿(UO)的溶解。还比较了配体对非晶质 U(IV)中铀的迁移作用。对于这两种 U 相,在没有有机配体的情况下,水溶液中的 U 浓度保持在低水平(UO 时<25 nM;非晶质 U(IV)时 300 nM)。测试的有机配体(2,6-吡啶二甲酸(DPA)、去铁胺 B(DFOB)、二亚乙基三胺五乙酸(HBED)和柠檬酸盐)在不同程度上增强了 U 的迁移。在 45 天内,配体仅迁移了 370 μM UO 的 0.3%,而在 2 天内,迁移了 300 μM 生物量结合的非晶质 U(IV)的大部分(高达 57%)(迁移的 U 量多 500 倍以上)。这项工作表明,环境中存在的许多有机配体有可能在缺氧条件下将顽固和不稳定的 U 形式迁移到危险水平,并因此破坏固定化 U(IV)源的稳定性。