Sivan-Loukianova Elena, Eberl Daniel F
Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242-1324, USA.
J Comp Neurol. 2005 Oct 10;491(1):46-55. doi: 10.1002/cne.20687.
The role of auditory circuitry is to decipher relevant information from acoustic signals. Acoustic parameters used by different insect species vary widely. All these auditory systems, however, share a common transducer: tympanal organs as well as the Drosophila flagellar ears use chordotonal organs as the auditory mechanoreceptors. We here describe the central neural projections of the Drosophila Johnston's organ (JO). These neurons, which represent the antennal auditory organ, terminate in the antennomechanosensory center. To ensure correct identification of these terminals we made use of a beta-galactosidase-expressing transgene that labels JO neurons specifically. Analysis of these projection pathways shows that parallel JO fibers display extensive contacts, including putative gap junctions. We find that the synaptic boutons show both chemical synaptic structures as well as putative gap junctions, indicating mixed synapses, and belong largely to the divergent type, with multiple small postsynaptic processes. The ultrastructure of JO fibers and synapses may indicate an ability to process temporally discretized acoustic information.
听觉回路的作用是从声学信号中解读相关信息。不同昆虫物种使用的声学参数差异很大。然而,所有这些听觉系统都有一个共同的换能器:鼓膜器官以及果蝇的鞭毛状耳朵都使用弦音器作为听觉机械感受器。我们在此描述果蝇约翰斯顿器官(JO)的中枢神经投射。这些代表触角听觉器官的神经元终止于触角机械感觉中心。为了确保正确识别这些终端,我们使用了一个表达β-半乳糖苷酶的转基因,该转基因专门标记JO神经元。对这些投射通路的分析表明,平行的JO纤维显示出广泛的接触,包括假定的缝隙连接。我们发现突触小体既显示化学突触结构,也显示假定的缝隙连接,表明存在混合突触,并且在很大程度上属于发散型,具有多个小的突触后过程。JO纤维和突触的超微结构可能表明其具有处理时间离散声学信息的能力。