Wang You-Gan, Lin Xu, Zhu Min
CSIRO Mathematical and Information Sciences, 65 Brockway Road, Floreat, Western Australia 6014, Australia.
Biometrics. 2005 Sep;61(3):684-91. doi: 10.1111/j.1541-0420.2005.00354.x.
Robust methods are useful in making reliable statistical inferences when there are small deviations from the model assumptions. The widely used method of the generalized estimating equations can be "robustified" by replacing the standardized residuals with the M-residuals. If the Pearson residuals are assumed to be unbiased from zero, parameter estimators from the robust approach are asymptotically biased when error distributions are not symmetric. We propose a distribution-free method for correcting this bias. Our extensive numerical studies show that the proposed method can reduce the bias substantially. Examples are given for illustration.
当与模型假设存在小偏差时,稳健方法有助于做出可靠的统计推断。通过用M残差代替标准化残差,广泛使用的广义估计方程方法可以变得“稳健”。如果假设Pearson残差无偏于零,那么当误差分布不对称时,稳健方法的参数估计量会渐近有偏。我们提出了一种无分布方法来校正这种偏差。我们广泛的数值研究表明,所提出的方法可以大幅减少偏差。文中给出了示例进行说明。