Suppr超能文献

小样本纵向分析中广义估计方程(GEE)的协方差估计量

Covariance estimators for generalized estimating equations (GEE) in longitudinal analysis with small samples.

作者信息

Wang Ming, Kong Lan, Li Zheng, Zhang Lijun

机构信息

Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, U.S.A.

Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, U.S.A.

出版信息

Stat Med. 2016 May 10;35(10):1706-21. doi: 10.1002/sim.6817. Epub 2015 Nov 19.

Abstract

Generalized estimating equations (GEE) is a general statistical method to fit marginal models for longitudinal data in biomedical studies. The variance-covariance matrix of the regression parameter coefficients is usually estimated by a robust "sandwich" variance estimator, which does not perform satisfactorily when the sample size is small. To reduce the downward bias and improve the efficiency, several modified variance estimators have been proposed for bias-correction or efficiency improvement. In this paper, we provide a comprehensive review on recent developments of modified variance estimators and compare their small-sample performance theoretically and numerically through simulation and real data examples. In particular, Wald tests and t-tests based on different variance estimators are used for hypothesis testing, and the guideline on appropriate sample sizes for each estimator is provided for preserving type I error in general cases based on numerical results. Moreover, we develop a user-friendly R package "geesmv" incorporating all of these variance estimators for public usage in practice.

摘要

广义估计方程(GEE)是一种用于拟合生物医学研究中纵向数据边际模型的通用统计方法。回归参数系数的方差 - 协方差矩阵通常由稳健的“三明治”方差估计器估计,当样本量较小时,该估计器的表现并不令人满意。为了减少向下偏差并提高效率,已经提出了几种改进的方差估计器用于偏差校正或效率提升。在本文中,我们对改进方差估计器的最新进展进行了全面综述,并通过模拟和实际数据示例在理论和数值上比较了它们的小样本性能。特别是,基于不同方差估计器的Wald检验和t检验用于假设检验,并根据数值结果为每种估计器在一般情况下保持I型错误提供了适当样本量的指导方针。此外,我们开发了一个用户友好的R包“geesmv”,将所有这些方差估计器整合在一起以供实际公共使用。

相似文献

1
Covariance estimators for generalized estimating equations (GEE) in longitudinal analysis with small samples.
Stat Med. 2016 May 10;35(10):1706-21. doi: 10.1002/sim.6817. Epub 2015 Nov 19.
4
Modified robust variance estimator for generalized estimating equations with improved small-sample performance.
Stat Med. 2011 May 20;30(11):1278-91. doi: 10.1002/sim.4150. Epub 2010 Dec 29.
5
Working covariance model selection for generalized estimating equations.
Stat Med. 2011 Nov 20;30(26):3117-24. doi: 10.1002/sim.4300. Epub 2011 Jul 11.
6
Small sample performance of bias-corrected sandwich estimators for cluster-randomized trials with binary outcomes.
Stat Med. 2015 Jan 30;34(2):281-96. doi: 10.1002/sim.6344. Epub 2014 Oct 24.
7
Robust estimating functions and bias correction for longitudinal data analysis.
Biometrics. 2005 Sep;61(3):684-91. doi: 10.1111/j.1541-0420.2005.00354.x.
9
ORTH.Ord: An R package for analyzing correlated ordinal outcomes using alternating logistic regressions with orthogonalized residuals.
Comput Methods Programs Biomed. 2023 Jul;237:107567. doi: 10.1016/j.cmpb.2023.107567. Epub 2023 Apr 29.
10
A covariance estimator for GEE with improved small-sample properties.
Biometrics. 2001 Mar;57(1):126-34. doi: 10.1111/j.0006-341x.2001.00126.x.

引用本文的文献

1
Health related quality of life of tuberculosis patients in South India: A longitudinal assessment study.
PLoS One. 2025 Jul 23;20(7):e0328484. doi: 10.1371/journal.pone.0328484. eCollection 2025.
3
Age, gender and regional/ethnic variations in emmetropic axial growth rate.
Ophthalmic Physiol Opt. 2025 Sep;45(6):1485-1495. doi: 10.1111/opo.13545. Epub 2025 Jun 16.
9
Examining the impact of 12-hour day and night shifts on nurses' fatigue: A prospective cohort study.
Int J Nurs Stud Adv. 2022 Mar 21;4:100076. doi: 10.1016/j.ijnsa.2022.100076. eCollection 2022 Dec.
10
Somatic comorbidity and the progression of cognitive impairment.
Front Aging Neurosci. 2023 Nov 17;15:1219449. doi: 10.3389/fnagi.2023.1219449. eCollection 2023.

本文引用的文献

1
Small sample performance of bias-corrected sandwich estimators for cluster-randomized trials with binary outcomes.
Stat Med. 2015 Jan 30;34(2):281-96. doi: 10.1002/sim.6344. Epub 2014 Oct 24.
2
An overview of longitudinal data analysis methods for neurological research.
Dement Geriatr Cogn Dis Extra. 2011 Jan;1(1):330-57. doi: 10.1159/000330228. Epub 2011 Oct 26.
4
Penalized generalized estimating equations for high-dimensional longitudinal data analysis.
Biometrics. 2012 Jun;68(2):353-60. doi: 10.1111/j.1541-0420.2011.01678.x. Epub 2011 Sep 28.
5
Modified robust variance estimator for generalized estimating equations with improved small-sample performance.
Stat Med. 2011 May 20;30(11):1278-91. doi: 10.1002/sim.4150. Epub 2010 Dec 29.
6
Sample size considerations for GEE analyses of three-level cluster randomized trials.
Biometrics. 2010 Dec;66(4):1230-7. doi: 10.1111/j.1541-0420.2009.01374.x.
9
Small-sample adjustments for Wald-type tests using sandwich estimators.
Biometrics. 2001 Dec;57(4):1198-206. doi: 10.1111/j.0006-341x.2001.01198.x.
10
Selected statistical issues in group randomized trials.
Annu Rev Public Health. 2001;22:167-87. doi: 10.1146/annurev.publhealth.22.1.167.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验