Kwon Chulan, Ao Ping, Thouless David J
Department of Physics, Myongji University, Namdong San 38-2, Yongin, Kyonggi-Do, 449-728, Republic of Korea.
Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13029-33. doi: 10.1073/pnas.0506347102. Epub 2005 Sep 1.
We analyze the structure of stochastic dynamics near either a stable or unstable fixed point, where the force can be approximated by linearization. We find that a cost function that determines a Boltzmann-like stationary distribution can always be defined near it. Such a stationary distribution does not need to satisfy the usual detailed balance condition but might have instead a divergence-free probability current. In the linear case, the force can be split into two parts, one of which gives detailed balance with the diffusive motion, whereas the other induces cyclic motion on surfaces of constant cost function. By using the Jordan transformation for the force matrix, we find an explicit construction of the cost function. We discuss singularities of the transformation and their consequences for the stationary distribution. This Boltzmann-like distribution may be not unique, and nonlinear effects and boundary conditions may change the distribution and induce additional currents even in the neighborhood of a fixed point.
我们分析了稳定或不稳定不动点附近的随机动力学结构,在该点处力可通过线性化近似。我们发现,总能在其附近定义一个确定类似玻尔兹曼平稳分布的代价函数。这样的平稳分布无需满足通常的细致平衡条件,而是可能具有无散概率流。在线性情况下,力可分为两部分,其中一部分与扩散运动给出细致平衡,而另一部分在恒定代价函数的曲面上诱导循环运动。通过对力矩阵使用约旦变换,我们找到了代价函数的显式构造。我们讨论了变换的奇点及其对平稳分布的影响。这种类似玻尔兹曼的分布可能不唯一,并且非线性效应和边界条件可能会改变分布,甚至在不动点附近诱导额外的流。