Benozzo Danilo, Baggio Giacomo, Baron Giorgia, Chiuso Alessandro, Zampieri Sandro, Bertoldo Alessandra
Information Engineering Department, University of Padova, Padova, Italy.
Padova Neuroscience Center, University of Padova, Padova, Italy.
Netw Neurosci. 2024 Oct 1;8(3):965-988. doi: 10.1162/netn_a_00381. eCollection 2024.
This study challenges the traditional focus on zero-lag statistics in resting-state functional magnetic resonance imaging (rsfMRI) research. Instead, it advocates for considering time-lag interactions to unveil the directionality and asymmetries of the brain hierarchy. Effective connectivity (EC), the state matrix in dynamical causal modeling (DCM), is a commonly used metric for studying dynamical properties and causal interactions within a linear state-space system description. Here, we focused on how time-lag statistics are incorporated within the framework of DCM resulting in an asymmetric EC matrix. Our approach involves decomposing the EC matrix, revealing a steady-state differential cross-covariance matrix that is responsible for modeling information flow and introducing time-irreversibility. Specifically, the system's dynamics, influenced by the off-diagonal part of the differential covariance, exhibit a curl steady-state flow component that breaks detailed balance and diverges the dynamics from equilibrium. Our empirical findings indicate that the EC matrix's outgoing strengths correlate with the flow described by the differential cross covariance, while incoming strengths are primarily driven by zero-lag covariance, emphasizing conditional independence over directionality.
本研究对静息态功能磁共振成像(rsfMRI)研究中传统的零滞后统计聚焦提出了挑战。相反,它主张考虑时间滞后相互作用以揭示大脑层级结构的方向性和不对称性。有效连接性(EC),即动态因果模型(DCM)中的状态矩阵,是用于在线性状态空间系统描述内研究动态特性和因果相互作用的常用指标。在此,我们关注时间滞后统计如何被纳入DCM框架从而产生一个不对称的EC矩阵。我们的方法包括分解EC矩阵,揭示一个负责对信息流进行建模并引入时间不可逆性的稳态微分交叉协方差矩阵。具体而言,受微分协方差非对角部分影响的系统动力学表现出一种卷曲稳态流分量,该分量打破了详细平衡并使动力学偏离平衡态。我们的实证研究结果表明,EC矩阵的输出强度与微分交叉协方差所描述的流相关,而输入强度主要由零滞后协方差驱动,强调条件独立性而非方向性。