Park Yong-Cheol, Choi Jin-Ho, Bennett George N, Seo Jin-Ho
Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea.
J Biotechnol. 2006 Feb 24;121(4):508-16. doi: 10.1016/j.jbiotec.2005.08.003. Epub 2005 Sep 6.
D-Ribose is a functional five-carbon sugar, which has been used for the commercial production of riboflavin. Mechanisms of d-ribose biosynthesis from xylose were investigated in the genetically engineered Bacillus subtilis JY200 with a deficiency in transketolase. A transketolase gene (tkt) disruption cassette in plasmid pUNKC was introduced into the chromosomal tkt gene in the wild type B. subtilis 168. Analysis of culture broth by thin layer chromatography confirmed that the disruption of tkt allowed B. subtilis JY200 to produce d-ribose. In a batch culture of B. subtilis JY200, a loss of cell viability was observed after glucose depletion. Fed-batch cultivation by feeding 400 gl(-1) glucose solution as a co-substrate was carried out to supply energy to xylose metabolism and to maintain cell viability throughout cultivation. Fed-batch cultivation of B. subtilis JY200 in a complex medium containing 11 gl(-1) xylose and 5 gl(-1) glucose initially gave the best result of 10.1 gl(-1)D-ribose concentration, 0.24 gg(-1)D-ribose yield and 0.29 gl(-1)h(-1) productivity, corresponding to 40-, 5- and 12-fold increases compared with those in the batch culture. A kinetic study of D-ribose production in fed-batch cultivations of B. subtilis JY200 suggested that xylose uptake might be critical to maximize D-ribose biosynthesis from xylose.
D-核糖是一种功能性五碳糖,已用于商业生产核黄素。在转酮醇酶缺陷的基因工程枯草芽孢杆菌JY200中研究了从木糖生物合成D-核糖的机制。将质粒pUNKC中的转酮醇酶基因(tkt)破坏盒导入野生型枯草芽孢杆菌168的染色体tkt基因中。通过薄层色谱法分析培养液证实,tkt的破坏使枯草芽孢杆菌JY200能够产生D-核糖。在枯草芽孢杆菌JY200的分批培养中,葡萄糖耗尽后观察到细胞活力丧失。通过补料分批培养,以400 g/L葡萄糖溶液作为共底物进行补料,为木糖代谢提供能量,并在整个培养过程中维持细胞活力。在含有最初11 g/L木糖和5 g/L葡萄糖的复合培养基中对枯草芽孢杆菌JY200进行补料分批培养,最初得到了最佳结果,D-核糖浓度为10.1 g/L,D-核糖产量为0.24 g/g(葡萄糖),生产率为0.29 g/L·h,与分批培养相比分别提高了40倍、5倍和12倍。对枯草芽孢杆菌JY200补料分批培养中D-核糖生产的动力学研究表明,木糖摄取可能是最大限度地从木糖生物合成D-核糖至关重要的因素。