Eghbalnia Hamid R, Bahrami Arash, Tonelli Marco, Hallenga Klaas, Markley John L
National Magnetic Resonance Facility at Madison, Center for Eukaryotic Structural Genomics, Graduate Program in Biophysics, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
J Am Chem Soc. 2005 Sep 14;127(36):12528-36. doi: 10.1021/ja052120i.
We describe a novel approach to the rapid collection and processing of multidimensional NMR data: "high-resolution iterative frequency identification for NMR" (HIFI-NMR). As with other reduced dimensionality approaches, HIFI-NMR collects n-dimensional data as a set of two-dimensional (2D) planes. The HIFI-NMR algorithm incorporates several innovative features. (1) Following the initial collection of two orthogonal 2D planes, tilted planes are selected adaptively, one-by-one. (2) Spectral space is analyzed in a rigorous statistical manner. (3) An online algorithm maintains a model that provides a probabilistic representation of the three-dimensional (3D) peak positions, derives the optimal angle for the next plane to be collected, and stops data collection when the addition of another plane would not improve the data model. (4) A robust statistical algorithm extracts information from the plane projections and is used to drive data collection. (5) Peak lists with associated probabilities are generated directly, without total reconstruction of the 3D spectrum; these are ready for use in subsequent assignment or structure determination steps. As a proof of principle, we have tested the approach with 3D triple-resonance experiments of the kind used to assign protein backbone and side-chain resonances. Peaks extracted automatically by HIFI-NMR, for both small and larger proteins, included approximately 98% of real peaks obtained from control experiments in which data were collected by conventional 3D methods. HIFI-NMR required about one-tenth the time for data collection and avoided subsequent data processing and peak-picking. The approach can be implemented on commercial NMR spectrometers and is extensible to higher-dimensional NMR.
我们描述了一种用于快速采集和处理多维核磁共振(NMR)数据的新方法:“用于NMR的高分辨率迭代频率识别”(HIFI-NMR)。与其他降维方法一样,HIFI-NMR将n维数据作为一组二维(2D)平面进行采集。HIFI-NMR算法具有几个创新特性。(1)在最初采集两个正交的2D平面之后,自适应地逐个选择倾斜平面。(2)以严格的统计方式分析谱空间。(3)一种在线算法维护一个模型,该模型提供三维(3D)峰位置的概率表示,推导下一个要采集平面的最佳角度,并在添加另一个平面不会改善数据模型时停止数据采集。(4)一种稳健的统计算法从平面投影中提取信息,并用于驱动数据采集。(5)直接生成带有相关概率的峰列表,无需对3D谱进行完全重建;这些峰列表可直接用于后续的归属或结构确定步骤。作为原理验证,我们用用于确定蛋白质主链和侧链共振的那种3D三共振实验测试了该方法。对于小分子和大分子蛋白质,HIFI-NMR自动提取的峰包含了通过传统3D方法采集数据的对照实验中获得的约98%的真实峰。HIFI-NMR所需的数据采集时间约为传统方法的十分之一,并且避免了后续的数据处理和峰挑选。该方法可在商用NMR光谱仪上实现,并且可扩展到更高维的NMR。