Suppr超能文献

使用深度神经网络重建非均匀采样的 NMR 光谱。

Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR Spectra.

机构信息

Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.

出版信息

J Biomol NMR. 2019 Nov;73(10-11):577-585. doi: 10.1007/s10858-019-00265-1. Epub 2019 Jul 10.

Abstract

Non-uniform and sparse sampling of multi-dimensional NMR spectra has over the last decade become an important tool to allow for fast acquisition of multi-dimensional NMR spectra with high resolution. The success of non-uniform sampling NMR hinge on both the development of algorithms to accurately reconstruct the sparsely sampled spectra and the design of sampling schedules that maximise the information contained in the sampled data. Traditionally, the reconstruction tools and algorithms have aimed at reconstructing the full spectrum and thus 'fill out the missing points' in the time-domain spectrum, although other techniques are based on multi-dimensional decomposition and extraction of multi-dimensional shapes. Also over the last decade, machine learning, deep neural networks, and artificial intelligence have seen new applications in an enormous range of sciences, including analysis of MRI spectra. As a proof-of-principle, it is shown here that simple deep neural networks can be trained to reconstruct sparsely sampled NMR spectra. For the reconstruction of two-dimensional NMR spectra, reconstruction using a deep neural network performs as well, if not better than, the currently and widely used techniques. It is therefore anticipated that deep neural networks provide a very valuable tool for the reconstruction of sparsely sampled NMR spectra in the future to come.

摘要

非均匀和稀疏采样多维 NMR 谱在过去十年中已成为一种重要的工具,可实现具有高分辨率的多维 NMR 谱的快速采集。非均匀采样 NMR 的成功依赖于算法的发展,这些算法可准确地重建稀疏采样的光谱,以及设计采样方案,最大限度地提高采样数据中的信息量。传统上,重建工具和算法旨在重建全谱,从而“填补时域谱中的缺失点”,尽管其他技术基于多维分解和多维形状的提取。同样在过去十年中,机器学习、深度学习网络和人工智能在包括 MRI 光谱分析在内的众多科学领域中得到了新的应用。作为原理验证,本文表明,可以训练简单的深度学习网络来重建稀疏采样的 NMR 谱。对于二维 NMR 谱的重建,如果不是更好的话,使用深度神经网络的重建与当前广泛使用的技术一样好。因此,可以预期深度学习网络在未来的稀疏采样 NMR 谱重建中提供非常有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5149/6859195/f0be0c13ba61/10858_2019_265_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验