Kim Seho, Szyperski Thomas
Department of Chemistry, University at Buffalo, The State University of New York, The Northeast Structural Genomics Consortium, Buffalo, New York 14260, USA.
J Am Chem Soc. 2003 Feb 5;125(5):1385-93. doi: 10.1021/ja028197d.
Widely used higher-dimensional Fourier transform (FT) NMR spectroscopy suffers from two major drawbacks: (i) The minimal measurement time of an N-dimensional FT NMR experiment, which is constrained by the need to sample N - 1 indirect dimensions, may exceed by far the measurement time required to achieve sufficient signal-to-noise ratios. (ii) The low resolution in the indirect dimensions severely limits the precision of the indirect chemical shift measurements. To relax on constraints arising from these drawbacks, we present here an acquisition scheme which is based on the phase-sensitive joint sampling of the indirect dimensions spanning a subspace of a conventional NMR experiment. This allows one to very rapidly obtain high-dimensional NMR spectral information. Because the phase-sensitive joint sampling yields subspectra containing "chemical shift multiplets", alternative data processing is required for editing the components of the multiplets. The subspectra are linearly combined using a so-called "G-matrix" and subsequently Fourier-transformed. The chemical shifts are multiply encoded in the resonance lines constituting the shift multiplets. This corresponds to performing statistically independent multiple measurements, and the chemical shifts can thus be obtained with high precision. To indicate that a combined G-matrix and FT is employed, we named the new approach "GFT NMR spectroscopy". GFT NMR opens new avenues to establish high-throughput protein structure determination, to investigate systems with a higher degree of chemical shift degeneracy, and to study dynamic phenomena such as slow folding of biological macromolecules in greater detail.
广泛使用的高维傅里叶变换(FT)核磁共振光谱存在两个主要缺点:(i)N维FT核磁共振实验的最短测量时间受到对N - 1个间接维度进行采样的需求的限制,可能远远超过实现足够信噪比所需的测量时间。(ii)间接维度的低分辨率严重限制了间接化学位移测量的精度。为了缓解这些缺点带来的限制,我们在此提出一种采集方案,该方案基于对跨越传统核磁共振实验子空间的间接维度进行相敏联合采样。这使得人们能够非常快速地获得高维核磁共振光谱信息。由于相敏联合采样产生包含“化学位移多重峰”的子光谱,因此需要进行替代数据处理来编辑多重峰的成分。使用所谓的“G矩阵”对子光谱进行线性组合,随后进行傅里叶变换。化学位移在构成位移多重峰的共振线中进行多重编码。这相当于进行统计独立的多次测量,因此可以高精度地获得化学位移。为了表明采用了组合的G矩阵和FT,我们将这种新方法命名为“GFT核磁共振光谱”。GFT NMR为建立高通量蛋白质结构测定、研究具有更高程度化学位移简并性的系统以及更详细地研究动态现象(如生物大分子的缓慢折叠)开辟了新途径。