Güntürkün Onur
Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Germany.
Brain Res Bull. 2005 Sep 15;66(4-6):311-6. doi: 10.1016/j.brainresbull.2005.02.004. Epub 2005 Feb 24.
Is it possible to produce the same cognitive function with different brain organizations? This question is approached for working memory, a cognitive entity that is equally organized in birds and mammals. The critical forebrain structure for working memory is the nidopallium caudolaterale (NCL) in birds and the prefrontal cortex (PFC) in mammals. Although both structures share a large number of neural architectural features, they are probably not homologous but represent a remarkable case of convergent evolution. In reviewing the neuronal mechanisms for working memory in birds and mammals it becomes apparent that the similarities of NCL and PFC extend from the neuronal activation patterns during memory tasks down to the biophysical mechanisms of synaptic currents. Both in mammals and birds, dopamine acts via D1-receptors to tune preactivated neurons into sustained high-frequency patterns with which goal states can be held over time until an appropriate response can be generated. The degrees of freedom to create different neural architectures to solve the problem of 'stimulus maintenance' seem to be very small.
是否有可能通过不同的大脑组织产生相同的认知功能?这个问题是针对工作记忆提出的,工作记忆是一种在鸟类和哺乳动物中组织方式相同的认知实体。对工作记忆至关重要的前脑结构在鸟类中是尾外侧巢皮质(NCL),在哺乳动物中是前额叶皮质(PFC)。尽管这两种结构具有大量的神经结构特征,但它们可能并非同源,而是趋同进化的一个显著例子。在回顾鸟类和哺乳动物工作记忆的神经元机制时,很明显NCL和PFC的相似性从记忆任务期间的神经元激活模式一直延伸到突触电流的生物物理机制。在哺乳动物和鸟类中,多巴胺都通过D1受体起作用,将预激活的神经元调节为持续的高频模式,通过这种模式目标状态可以随时间保持,直到能够产生适当的反应。创造不同神经结构来解决“刺激维持”问题的自由度似乎非常小。