Suppr超能文献

葡萄糖最小模型的简化采样方案:贝叶斯估计的重要性

Reduced sampling schedule for the glucose minimal model: importance of Bayesian estimation.

作者信息

Magni Paolo, Sparacino Giovanni, Bellazzi Riccardo, Cobelli Claudio

机构信息

Dipartimento di Informatica e Sistemica, Università degli Studi di Padova, I-35131 Padua, Italy.

出版信息

Am J Physiol Endocrinol Metab. 2006 Jan;290(1):E177-E184. doi: 10.1152/ajpendo.00241.2003. Epub 2005 Sep 6.

Abstract

The minimal model (MM) of glucose kinetics during an intravenous glucose tolerance test (IVGTT) is widely used in clinical studies to measure metabolic indexes such as glucose effectiveness (S(G)) and insulin sensitivity (S(I)). The standard (frequent) IVGTT sampling schedule (FSS) for MM identification consists of 30 points over 4 h. To facilitate clinical application of the MM, reduced sampling schedules (RSS) of 13-14 samples have also been derived for normal subjects. These RSS are especially appealing in large-scale studies. However, with RSS, the precision of S(G) and S(I) estimates deteriorates and, in certain cases, becomes unacceptably poor. To overcome this difficulty, population approaches such as the iterative two-stage (ITS) approach have been recently proposed, but, besides leaving some theoretical issues open, they appear to be oversized for the problem at hand. Here, we show that a Bayesian methodology operating at the single individual level allows an accurate determination of MM parameter estimates together with a credible measure of their precision. Results of 16 subjects show that, in passing from FSS to RSS, there are no significant changes of point estimates in nearly all of the subjects and that only a limited deterioration of parameter precision occurs. In addition, in contrast with the previously proposed ITS method, credible confidence intervals (e.g., excluding negative values) are obtained. They can be crucial for a subsequent use of the estimated MM parameters, such as in classification, clustering, regression, or risk analysis.

摘要

静脉葡萄糖耐量试验(IVGTT)期间葡萄糖动力学的最小模型(MM)在临床研究中被广泛用于测量诸如葡萄糖效能(S(G))和胰岛素敏感性(S(I))等代谢指标。用于MM识别的标准(频繁)IVGTT采样方案(FSS)在4小时内包含30个采样点。为便于MM在临床中的应用,也已推导出针对正常受试者的13 - 14个样本的简化采样方案(RSS)。这些RSS在大规模研究中特别有吸引力。然而,采用RSS时,S(G)和S(I)估计值的精度会下降,在某些情况下,精度会差到不可接受。为克服这一困难,最近有人提出了诸如迭代两阶段(ITS)方法等群体方法,但除了留下一些理论问题未解决外,它们似乎对于手头的问题来说有些过于庞大。在此,我们表明在个体层面运行的贝叶斯方法能够准确确定MM参数估计值,并对其精度给出可靠的度量。16名受试者的结果表明,从FSS转换到RSS时,几乎所有受试者的点估计值都没有显著变化,并且仅发生了有限的参数精度下降。此外,与先前提出的ITS方法不同,我们获得了可信的置信区间(例如,排除负值)。它们对于后续使用估计的MM参数可能至关重要,例如在分类、聚类、回归或风险分析中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验