Suppr超能文献

Structural characterization of a serendipitously discovered bioactive macromolecule, lignin sulfate.

作者信息

Raghuraman Arjun, Tiwari Vaibhav, Thakkar Jay N, Gunnarsson Gunnar T, Shukla Deepak, Hindle Michael, Desai Umesh R

机构信息

Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298-0540, USA.

出版信息

Biomacromolecules. 2005 Sep-Oct;6(5):2822-32. doi: 10.1021/bm0503064.

Abstract

The herpes simplex virus-1 (HSV-1) utilizes cell-surface glycosaminoglycan, heparan sulfate, to gain entry into cells and cause infection. In a search for synthetic mimics of heparan sulfate to prevent HSV infection, we discovered potent inhibitory activity arising from sulfation of a monomeric flavonoid. Yet, detailed screening indicated that the sulfated flavonoid was completely inactive and the potent inhibitory activity arose from a macromolecular substance present in the parent flavonoid. The active principle was identified through a battery of biophysical and chemical analyses as a sulfated form of lignin, a three-dimensional network polymer composed of substituted phenylpropanoid monomers. Mass spectral analysis of the parent lignin and its sulfated derivative indicates the presence of p-coumaryl monomers interconnected through uncondensed beta-O-4-linkages. Elemental analysis of lignin sulfate correlates primarily with a polymer of p-coumaryl alcohol containing one sulfate group. High-performance size exclusion chromatography shows a wide molecular weight distribution from 1.5 to 40 kDa suggesting significant polydispersity. Polyacrylamide gel electrophoresis (PAGE) analysis indicates a highly networked polymer that differs significantly from linear charged polymers with respect to its electrophoretic mobility. Overall, macromolecular lignin sulfate presents a multitude of substructures that can interact with biomolecules, including viral glycoproteins, using hydrophobic, hydrogen-bonding, and ionic forces. Thus, lignin sulfate represents a large number of interesting structures with potential medicinal benefits.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验