Acharya U Rajendra, Faust Oliver, Kannathal N, Chua TjiLeng, Laxminarayan Swamy
Department of Electronics and Computer Engineering, School of Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore.
Comput Methods Programs Biomed. 2005 Oct;80(1):37-45. doi: 10.1016/j.cmpb.2005.06.011.
Application of non-linear dynamics methods to the physiological sciences demonstrated that non-linear models are useful for understanding complex physiological phenomena such as abrupt transitions and chaotic behavior. Sleep stages and sustained fluctuations of autonomic functions such as temperature, blood pressure, electroencephalogram (EEG), etc., can be described as a chaotic process. The EEG signals are highly subjective and the information about the various states may appear at random in the time scale. Therefore, EEG signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. The sleep data analysis is carried out using non-linear parameters: correlation dimension, fractal dimension, largest Lyapunov entropy, approximate entropy, Hurst exponent, phase space plot and recurrence plots. These non-linear parameters quantify the cortical function at different sleep stages and the results are tabulated.
将非线性动力学方法应用于生理科学表明,非线性模型有助于理解诸如突然转变和混沌行为等复杂的生理现象。睡眠阶段以及诸如体温、血压、脑电图(EEG)等自主功能的持续波动可被描述为一个混沌过程。EEG信号具有高度主观性,关于各种状态的信息可能在时间尺度上随机出现。因此,利用计算机提取和分析的EEG信号参数在诊断中非常有用。睡眠数据分析使用非线性参数进行:关联维数、分形维数、最大李雅普诺夫指数、近似熵、赫斯特指数、相空间图和递归图。这些非线性参数量化了不同睡眠阶段的皮质功能,并将结果制成表格。