Suppr超能文献

一种使用遗传算法进行神经网络进化的替代方法:通过组合优化进行交叉。

An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization.

作者信息

García-Pedrajas Nicolás, Ortiz-Boyer Domingo, Hervás-Martínez César

机构信息

Department of Computing and Numerical Analysis, University of Córdoba, 14071 Córdoba, Spain.

出版信息

Neural Netw. 2006 May;19(4):514-28. doi: 10.1016/j.neunet.2005.08.014. Epub 2005 Dec 15.

Abstract

In this work we present a new approach to crossover operator in the genetic evolution of neural networks. The most widely used evolutionary computation paradigm for neural network evolution is evolutionary programming. This paradigm is usually preferred due to the problems caused by the application of crossover to neural network evolution. However, crossover is the most innovative operator within the field of evolutionary computation. One of the most notorious problems with the application of crossover to neural networks is known as the permutation problem. This problem occurs due to the fact that the same network can be represented in a genetic coding by many different codifications. Our approach modifies the standard crossover operator taking into account the special features of the individuals to be mated. We present a new model for mating individuals that considers the structure of the hidden layer and redefines the crossover operator. As each hidden node represents a non-linear projection of the input variables, we approach the crossover as a problem on combinatorial optimization. We can formulate the problem as the extraction of a subset of near-optimal projections to create the hidden layer of the new network. This new approach is compared to a classical crossover in 25 real-world problems with an excellent performance. Moreover, the networks obtained are much smaller than those obtained with classical crossover operator.

摘要

在这项工作中,我们提出了一种在神经网络遗传进化中应用交叉算子的新方法。用于神经网络进化的最广泛使用的进化计算范式是进化编程。由于交叉算子应用于神经网络进化所带来的问题,这种范式通常更受青睐。然而,交叉算子是进化计算领域中最具创新性的算子。将交叉算子应用于神经网络时最著名的问题之一被称为排列问题。这个问题的出现是因为同一个网络在遗传编码中可以由许多不同的编码来表示。我们的方法考虑了待交配个体的特殊特征,对标准交叉算子进行了修改。我们提出了一种新的个体交配模型,该模型考虑了隐藏层的结构并重新定义了交叉算子。由于每个隐藏节点代表输入变量的非线性投影,我们将交叉问题作为一个组合优化问题来处理。我们可以将这个问题表述为提取一组近似最优投影来创建新网络的隐藏层。在25个实际问题中,我们将这种新方法与经典交叉算子进行了比较,结果显示新方法具有出色的性能。此外,通过新方法得到的网络比使用经典交叉算子得到的网络要小得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验