de la Rocha Jaime, Parga Néstor
Departamento de Física Teórica, Universidad Autónoma de Madrid, Canto-Blanco, 28049 Madrid, Spain.
J Neurosci. 2005 Sep 14;25(37):8416-31. doi: 10.1523/JNEUROSCI.0631-05.2005.
Unreliability is a ubiquitous feature of synaptic transmission in the brain. The information conveyed in the discharges of an ensemble of cells (e.g., in the spike count or in the timing of synchronous events) may not be faithfully transmitted to the postsynaptic cell because a large fraction of the spikes fail to elicit a synaptic response. In addition, short-term depression increases the failure rate with the presynaptic activity. We use a simple neuron model with stochastic depressing synapses to understand the transformations undergone by the spatiotemporal patterns of incoming spikes as these are first converted into synaptic current and afterward into the cell response. We analyze the mean and SD of the current produced by different stimuli with spatiotemporal correlations. We find that the mean, which carries information only about the spike count, rapidly saturates as the input rate increases. In contrast, the current deviation carries information about the correlations. If the afferent action potentials are uncorrelated, it saturates monotonically, whereas if they are correlated it increases, reaches a maximum, and then decreases to the value produced by the uncorrelated stimulus. This means that, at high input rates, depression erases from the synaptic current any trace of the spatiotemporal structure of the input. The non-monotonic behavior of the deviation can be inherited by the response rate provided that the mean current saturates below the current threshold setting the cell in the fluctuation-driven regimen. Afferent correlations therefore enable the modulation of the response beyond the saturation of the mean current.
不可靠性是大脑中突触传递普遍存在的一个特征。一组细胞放电所传递的信息(例如,峰电位计数或同步事件的时间)可能无法如实地传递给突触后细胞,因为很大一部分峰电位未能引发突触反应。此外,短期抑制会随着突触前活动增加失败率。我们使用一个具有随机抑制性突触的简单神经元模型,来理解传入峰电位的时空模式在首先转换为突触电流、随后转换为细胞反应过程中所经历的转变。我们分析了具有时空相关性的不同刺激所产生电流的均值和标准差。我们发现,仅携带关于峰电位计数信息的均值,会随着输入速率的增加而迅速饱和。相比之下,电流偏差携带关于相关性的信息。如果传入动作电位不相关,它会单调饱和,而如果它们相关,它会增加、达到最大值,然后降至不相关刺激所产生的值。这意味着,在高输入速率下,抑制会从突触电流中抹去输入时空结构的任何痕迹。只要平均电流在设定细胞处于波动驱动状态的电流阈值以下饱和,偏差的非单调行为就可以被反应速率继承。因此,传入相关性能够在平均电流饱和之外对反应进行调制。