Bohte Sander M, Mozer Michael C
Netherlands Centre for Mathematics and Computer Science (CWI), 1098 SJ Amsterdam, The Netherlands.
Neural Comput. 2007 Feb;19(2):371-403. doi: 10.1162/neco.2007.19.2.371.
Experimental studies have observed synaptic potentiation when a presynaptic neuron fires shortly before a postsynaptic neuron and synaptic depression when the presynaptic neuron fires shortly after. The dependence of synaptic modulation on the precise timing of the two action potentials is known as spike-timing dependent plasticity (STDP). We derive STDP from a simple computational principle: synapses adapt so as to minimize the postsynaptic neuron's response variability to a given presynaptic input, causing the neuron's output to become more reliable in the face of noise. Using an objective function that minimizes response variability and the biophysically realistic spike-response model of Gerstner (2001), we simulate neurophysiological experiments and obtain the characteristic STDP curve along with other phenomena, including the reduction in synaptic plasticity as synaptic efficacy increases. We compare our account to other efforts to derive STDP from computational principles and argue that our account provides the most comprehensive coverage of the phenomena. Thus, reliability of neural response in the face of noise may be a key goal of unsupervised cortical adaptation.
实验研究观察到,当突触前神经元在突触后神经元之前不久放电时会出现突触增强,而当突触前神经元在其后不久放电时会出现突触抑制。突触调制对两个动作电位精确时间的依赖性被称为尖峰时间依赖性可塑性(STDP)。我们从一个简单的计算原理推导STDP:突触进行适应性调整,以最小化突触后神经元对给定突触前输入的反应变异性,使神经元的输出在面对噪声时变得更可靠。使用一个使反应变异性最小化的目标函数和格斯特纳(2001年)的生物物理现实尖峰响应模型,我们模拟神经生理学实验,并获得特征性的STDP曲线以及其他现象,包括随着突触效能增加突触可塑性的降低。我们将我们的解释与其他从计算原理推导STDP的努力进行比较,并认为我们的解释对这些现象提供了最全面的涵盖。因此,面对噪声时神经反应的可靠性可能是无监督皮质适应性的一个关键目标。